in

Airborne eDNA captures three decades of ecosystem biodiversity


Abstract

Biodiversity loss threatens ecosystems and human well-being, making accurate, large-scale monitoring crucial. Environmental DNA (eDNA) has enabled species detection from substrates such as water, without the need for direct observation. Lately, airborne eDNA has been showing promise for tracking organisms from insects to mammals in terrestrial ecosystems. Conventional biodiversity assessments are often labor-intensive and limited in scope, leaving gaps in our understanding of ecosystem response to environmental change. Here, we demonstrate that airborne eDNA can detect organisms across the tree of life, quantify changes in abundance congruent with traditional monitoring, and reveal land-use induced regional decline of diversity in a northern boreal ecosystem over more than three decades. By analyzing 34 years of archived aerosol filters, we reconstruct weekly temporal relative abundance data for more than 2700 genera using non-targeted methods. This study provides unified, ecosystem-scale biodiversity surveillance spanning multiple decades, with data collected at weekly intervals on both the individual species and community level. Previously, large scale analyses of ecosystem changes, targeting all types of organisms, has been prohibitively expensive and difficult to attempt. Here, we present a way of holistically doing this type of analysis in a single framework.

Similar content being viewed by others

First national survey of terrestrial biodiversity using airborne eDNA

Shotgun sequencing of airborne eDNA achieves rapid assessment of whole biomes, population genetics and genomic variation

Archived natural DNA samplers reveal four decades of biodiversity change across the tree of life

Data availability

The sequencing data generated in this study are deposited in the NCBI Sequence Read Archive (SRA) under accession code PRJNA808200. The processed relative abundance data are available in Supplementary Data 6. External datasets used are land cover data (Swedish National Land Cover Database, www.naturvardsverket.se/en/services-and-permits/maps-and-map-services/national-land-cover-database/), map vector data (Natural Earth, www.naturalearthdata.com/), weather data (Copernicus Climate Change Service, https://doi.org/10.24381/cds.e2161bac, National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) Reanalysis project, psl.noaa.gov/data/gridded/reanalysis/, Swedish Meteorological and Hydrological Institute (SMHI), www.smhi.se/data/hitta-data-for-en-plats/ladda-ner-vaderobservationer, Climatology Lab, www.climatologylab.org/terraclimate.html, National Oceanic and Atmospheric Administration (NOAA) – Climate Prediction Center, www.cpc.ncep.noaa.gov, Expert Team on Climate Change Detection and Indices (ETCCDI), etccdi.pacificclimate.org/data.shtml), reference sequence data (National Center for Biotechnology Information (NCBI), www.ncbi.nlm.nih.gov/nucleotide/, accession numbers for all sequences used in the Kraken database are available at https://doi.org/10.5281/zenodo.17778887), species observational data (Swedish Species Observation System database, artportalen.se, Global Biodiversity Information Facility (GBIF), www.gbif.org, Swedish Bird Survey, www.fageltaxering.lu.se, Sámi Parliament of Sweden (Sámediggi), sametinget.se/renstatistik), and forestry data (The Swedish National Forest Inventory (NFI), www.slu.se/en/about-slu/organisation/departments/forest-resource-management/miljoanalys/nfi/, Swedish Forest Agency, www.skogsstyrelsen.se/laddanergeodata).

Code availability

StringMeUp, a computer program developed in-house and used in the classification of the sequence data, and the Kraken 2 fork are both available under DOIs https://doi.org/10.5281/zenodo.17569636 and https://doi.org/10.5281/zenodo.17570001, respectively.

References

  1. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Google Scholar 

  2. Ceballos, G. et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Google Scholar 

  3. Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).

    Google Scholar 

  4. Bálint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol. 33, 945–957 (2018).

    Google Scholar 

  5. Seeber, P. A. & Epp, L. S. Environmental DNA and metagenomics of terrestrial mammals as keystone taxa of recent and past ecosystems. Mamm. Rev. 52, 538–553 (2022).

    Google Scholar 

  6. Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. 11, 254 (2020).

    Google Scholar 

  7. van der Heyde, M., Bunce, M. & Nevill, P. Key factors to consider in the use of environmental DNA metabarcoding to monitor terrestrial ecological restoration. Sci. Total Environ. 848, 157617 (2022).

    Google Scholar 

  8. Clare, E. L. et al. Measuring biodiversity from DNA in the air. Curr. Biol. 32, 693–700 (2022).

    Google Scholar 

  9. Lynggaard, C. et al. Airborne environmental DNA for terrestrial vertebrate community monitoring. Curr. Biol. 32, 701–707 (2022).

    Google Scholar 

  10. Littlefair, J. E. et al. Air-quality networks collect environmental DNA with the potential to measure biodiversity at continental scales. Curr. Biol. 33, R426–R428 (2023).

    Google Scholar 

  11. Després, V. R. et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B Chem. Phys. Meteorol. 64, 15598 (2012).

    Google Scholar 

  12. Šantl-Temkiv, T., Amato, P., Casamayor, E. O., Lee, P. K. H. & Pointing, S. B. Microbial ecology of the atmosphere. FEMS Microbiol. Rev. 46, fuac009 (2022).

    Google Scholar 

  13. Fröhlich-Nowoisky, J. et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182, 346–376 (2016).

    Google Scholar 

  14. Métris, K. L. & Métris, J. Aircraft surveys for air eDNA: probing biodiversity in the sky. PeerJ. 11, e15171 (2023).

    Google Scholar 

  15. Karlsson, E. et al. Airborne microbial biodiversity and seasonality in Northern and Southern Sweden. PeerJ. 8, e8424 (2020).

    Google Scholar 

  16. Bowers, R. M. et al. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ. Sci. Technol. 47, 12097–12106 (2013).

    Google Scholar 

  17. Bowers, R. M., McLetchie, S., Knight, R. & Fierer, N. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 5, 601–612 (2011).

    Google Scholar 

  18. Johnson, M. D., Cox, R. D., Grisham, B. A., Lucia, D. & Barnes, M. A. Airborne eDNA reflects human activity and seasonal changes on a landscape scale. Front. Environ. Sci. 8, 563431 (2021).

    Google Scholar 

  19. Johnson, M. D., Barnes, M. A., Garrett, N. R. & Clare, E. L. Answers blowing in the wind: Detection of birds, mammals, and amphibians with airborne environmental DNA in a natural environment over a yearlong survey. Environ. DNA 5, 375–387 (2023).

    Google Scholar 

  20. Lynggaard, C., Frøslev, T. G., Johnson, M. S., Olsen, M. T. & Bohmann, K. Airborne environmental DNA captures terrestrial vertebrate diversity in nature. Mol. Ecol. Resour. 24, e13840 (2024).

    Google Scholar 

  21. Roger, F. et al. Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects—A proof of concept from the field. Environ. DNA 4, 790–807 (2022).

    Google Scholar 

  22. Pumkaeo, P., Takahashi, J. & Iwahashi, H. Detection and monitoring of insect traces in bioaerosols. PeerJ. 9, https://doi.org/10.7717/peerj.10862 (2021).

  23. Polling, M., Buij, R., Laros, I. & de Groot, G. A. Continuous daily sampling of airborne eDNA detects all vertebrate species identified by camera traps. Environ. DNA 6, e591 (2024).

    Google Scholar 

  24. Helin, A. et al. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: Seasonal patterns, abundances and size distributions. Atmos. Chem. Phys. 17, 13089–13101 (2017).

    Google Scholar 

  25. Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111–118 (2010).

    Google Scholar 

  26. Gonzalez, A. et al. Avoiding pandemic fears in the subway and conquering the platypus. mSystems 1, e00050–16 (2016).

    Google Scholar 

  27. Lu, J. et al. Metagenome analysis using the Kraken software suite. Nat. Protoc. 17, 2815–2839 (2022).

    Google Scholar 

  28. Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794 (2016).

  29. GBIF.org GBIF Occurrence Download https://doi.org/10.15468/dl.cjxesu (2020).

  30. Yates, M. C., Fraser, D. J. & Derry, A. M. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environ. DNA 1, 5–13 (2019).

    Google Scholar 

  31. Yates, M. C. et al. The relationship between eDNA particle concentration and organism abundance in nature is strengthened by allometric scaling. Mol. Ecol. 30, 3068–3082 (2021).

    Google Scholar 

  32. Fediajevaite, J., Priestley, V., Arnold, R. & Savolainen, V. Meta-analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards. Ecol. Evol. 11, 4803–4815 (2021).

  33. Harrison, J. B., Sunday, J. M. & Rogers, S. M. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. B Biol. Sci. 286, 20191409 (2019).

    Google Scholar 

  34. Valentin, R. E. et al. Moving eDNA surveys onto land: Strategies for active eDNA aggregation to detect invasive forest insects. Mol. Ecol. Resour. 20, 746–755 (2020).

    Google Scholar 

  35. Kirtane, A., Kleyer, H. & Deiner, K. Sorting states of environmental DNA: Effects of isolation method and water matrix on the recovery of membrane-bound, dissolved, and adsorbed states of eDNA. Environ. DNA 5, 582–596 (2023).

    Google Scholar 

  36. Manninen, H. E. et al. Patterns in airborne pollen and other primary biological aerosol particles (PBAP), and their contribution to aerosol mass and number in a boreal forest. Boreal Environ. Res. 19, 383–405 (2014).

    Google Scholar 

  37. li, S. & Georgopoulos, P. A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmos. Environ. 45, 2260–2276 (2011).

    Google Scholar 

  38. Nordén, J., Penttilä, R., Siitonen, J., Tomppo, E. & Ovaskainen, O. Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J. Ecol. 101, 701–712 (2013).

  39. Woo, C., An, C., Xu, S., Yi, S. M. & Yamamoto, N. Taxonomic diversity of fungi deposited from the atmosphere. ISME J. 12, 2051–2060 (2018).

    Google Scholar 

  40. Clauß, M. Particle size distribution of airborne micro-organisms in the environment-A review. Landbauforschung Volkenrode 65, 77–100 (2015).

    Google Scholar 

  41. Ruiz-Jimenez, J. et al. Determination of free amino acids, saccharides, and selected microbes in biogenic atmospheric aerosols – Seasonal variations, particle size distribution, chemical and microbial relations. Atmos. Chem. Phys. 21, 8775–8790 (2021).

    Google Scholar 

  42. Brook, J. R., Johnson, D. & Mamedov, A. Determination of the source areas contributing to regionally high warm season PM2.5 in eastern north america. J. Air Waste Manage Assoc. 54, 1162–1169 (2004).

    Google Scholar 

  43. Zhou, L., Hopke, P. K. & Liu, W. Comparison of two trajectory based models for locating particle sources for two rural New York sites. Atmos. Environ. 38, 1955–1963 (2004).

  44. Hopke, P. K. Review of receptor modeling methods for source apportionment. J. Air Waste Manage Assoc. 66, 237–259 (2016).

    Google Scholar 

  45. Belis, C. et al. European Guide on Air Pollution Apportionment with Receptor Models. (2019).

  46. Lavsund, S., Nygrén, T. & Solberg, E. J. Status of moose populations and challenges to moose management in Fennoscandia. Alces 39, 109–130 (2003).

    Google Scholar 

  47. Singh, N. J., Börger, L., Dettki, H., Bunnefeld, N. & Ericsson, G. From migration to nomadism: Movement variability in a northern ungulate across its latitudinal range. Ecol. Appl. 22, 2007–2020 (2012).

    Google Scholar 

  48. Watson, J. G., Chen, L. W. A., Chow, J. C., Doraiswamy, P. & Lowenthal, D. H. Source apportionment: Findings from the U.S. supersites program. J Air Waste Manage Assoc. 58, 265–288 (2008).

    Google Scholar 

  49. Blackman, R. et al. Environmental DNA: The next chapter. Mol. Ecol. 33, e17355 (2024).

    Google Scholar 

  50. Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).

    Google Scholar 

  51. Roche, K. E. & Mukherjee, S. The accuracy of absolute differential abundance analysis from relative count data. PLoS Comput. Biol. 18, e1010284 (2022).

    Google Scholar 

  52. Quinn, T. P., Richardson, M. F., Lovell, D. & Crowley, T. M. Propr: An R-package for identifying proportionally abundant features using compositional data analysis. Sci. Rep. 7, 16252 (2017).

    Google Scholar 

  53. Haas, J. C. et al. Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest. Soil Biol. Biochem. 125, 197–209 (2018).

    Google Scholar 

  54. Bowers, R. M. et al. Sources of bacteria in outdoor air across cities in the midwestern United States. Appl. Environ. Microbiol. 77, 6350–6356 (2011).

    Google Scholar 

  55. van der Merwe, M., Ericson, L., Walker, J., Thrall, P. H. & Burdon, J. J. Evolutionary relationships among species of Puccinia and Uromyces (Pucciniaceae, Uredinales) inferred from partial protein coding gene phylogenies. Mycol Res. 111, 163–175 (2007).

    Google Scholar 

  56. Terhonen, E., Blumenstein, K., Kovalchuk, A. & Asiegbu, F. O. Forest tree microbiomes and associated fungal endophytes: Functional roles and impact on forest health. Forests 10, 42 (2019).

    Google Scholar 

  57. Ren, F. et al. Tissue microbiome of Norway spruce affected by heterobasidion-induced wood decay. Microb. Ecol. 77, 640–650 (2019).

    Google Scholar 

  58. Ross, A. A., Müller, K. M., Scott Weese, J. & Neufeld, J. D. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc. Natl. Acad. Sci. USA 115, E5786–E5795 (2018).

    Google Scholar 

  59. Wiśniewska, K., Lewandowska, A. U. & Śliwińska-Wilczewska, S. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment – Review study. Environ. Int. 131, 104964 (2019).

    Google Scholar 

  60. Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42 (2017).

    Google Scholar 

  61. Reeve, R. et al. How to partition diversity. Preprint at https://doi.org/10.48550/arXiv.1404.6520 (2016).

  62. Leinster, T. Entropy and Diversity: The Axiomatic Approach. (Cambridge University Press, Cambridge, 2021).

  63. Hill, M. O. Diversity and evenness: A unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Google Scholar 

  64. Sax, D. F. & Gaines, S. D. Species diversity: From global decreases to local increases. Trends Ecol. Evol. 18, 561–566 (2003).

    Google Scholar 

  65. Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: Toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).

    Google Scholar 

  66. Ylisirniö, A. L. et al. Dead wood and polypore diversity in natural post-fire succession forests and managed stands – Lessons for biodiversity management in boreal forests. For. Ecol. Manage 286, 16–27 (2012).

    Google Scholar 

  67. Uboni, A., Blochel, A., Kodnik, D. & Moen, J. Modelling occurrence and status of mat-forming lichens in boreal forests to assess the past and current quality of reindeer winter pastures. Ecol. Indic. 96, 99–106 (2019).

    Google Scholar 

  68. Jonsson, B. G. et al. Rapid changes in ground vegetation of mature boreal forests—an analysis of Swedish national forest inventory data. Forests 12, 475 (2021).

    Google Scholar 

  69. SLU Artdatabanken. Rödlistade Arter i Sverige 2020. (SLU, Uppsala, 2020).

  70. Sandström, J. et al. Impacts of dead wood manipulation on the biodiversity of temperate and boreal forests. A systematic review. J. Appl. Ecol. 56, 1770–1781 (2019).

    Google Scholar 

  71. Bergstedt, J., Hagner, M. & Milberg, P. Effects on vegetation composition of a modified forest harvesting and propagation method compared with clear-cutting, scarification and planting. Appl. Veg. Sci. 11, 159–168 (2008).

    Google Scholar 

  72. Edman, M., Gustafsson, M., Stenlid, J., Jonsson, B. G. & Ericson, L. Spore deposition of wood-decaying fungi: Importance of landscape composition. Ecography 27, 103–111 (2004).

    Google Scholar 

  73. Siitonen, P., Lehtinen, A. & Siitonen, M. Effects of forest edges on the distribution, abundance, and regional persistence of wood-rotting fungi. Conserv. Biol. 19, 250–260 (2005).

    Google Scholar 

  74. Lewin, H. A. et al. Earth BioGenome project: sequencing life for the future of life. Proc. Natl. Acad. Sci. USA 115, 4325–4333 (2018).

    Google Scholar 

  75. Masson, O. et al. Airborne concentrations and chemical considerations of radioactive ruthenium from an undeclared major nuclear release in 2017. Proc. Natl. Acad. Sci. USA 116, 16750–16759 (2019).

    Google Scholar 

  76. The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Annu. Rep. 2022. (2023).

  77. Söderström, C., Ban, S., Jansson, P., Lindh, K. & Tooloutalaie, N. Radionuclides in Ground Level Air in Sweden Year 2006. (2007).

  78. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 110, 15758–15763 (2013).

    Google Scholar 

  79. Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

    Google Scholar 

  80. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  81. Bushnell, B.BBMap Short Read Aligner. Joint Genome Institute, Department of Energy (2014).

  82. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol 20, 1–13 (2019).

    Google Scholar 

  83. Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat. Modelling 15, 134–158 (2015).

    Google Scholar 

  84. Palarea-Albaladejo, J. & Martín-Fernández, J. A. zCompositions — R package for multivariate imputation of left-censored data under a compositional approach. Chemometr. Intell. Lab. Syst. 143, 85–96 (2015).

    Google Scholar 

  85. Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. InProceedings of the 9th Python in Science Conference 92–96 (2010).

  86. van den Boogaart, K. G. & Tolosana-Delgado, R. ‘compositions’: A unified R package to analyze compositional data. Comput. Geosci. 34, 320–338 (2008).

    Google Scholar 

  87. Oksanen, J. et al. vegan: Community Ecology Package. R package at https://CRAN.R-project.org/package=vegan (2020).

  88. GBIF.org GBIF Occurrence Download https://doi.org/10.15468/dl.xnyctg. (2020).

  89. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Google Scholar 

  90. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Google Scholar 

  91. Lindqvist, J. En Stokastisk Partikelmodell i Ett Icke-Metriskt Koordinatsystem. FOI-R–99-01086-862-SE, Swedish Defence Research Agency (1999).

  92. Muñoz-Sabater, J. ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.e2161bac (Accessed September 2019) (2019).

  93. Canty, A. & Ripley, B. boot: Bootstrap Functions (Originally by Angelo Canty for S). R package at https://cran.r-project.org/package=boot (2022).

  94. Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Application. Bootstrap Methods and their Application (Cambridge University Press, Cambridge, 1997).

  95. Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015).

    Google Scholar 

  96. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    Google Scholar 

  97. Carslaw, D. C. & Ropkins, K. Openair – An r package for air quality data analysis. Environ. Model. Softw. 27, 52–61 (2012).

    Google Scholar 

  98. Scott, S. L. & Varian, H. R. Predicting the present with Bayesian structural time series. Int. J. Math. Model. Num. Optimis. 5, 4–23 (2014).

    Google Scholar 

  99. Scott, S. L. bsts: Bayesian Structural Time Series. R package at https://CRAN.R-project.org/package=bsts (2022).

  100. Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    Google Scholar 

  101. Bürkner, P. C., Gabry, J. & Vehtari, A. Approximate leave-future-out cross-validation for Bayesian time series models. J. Stat. Comput. Simul. 90, 2499–2523 (2020).

    Google Scholar 

  102. Durbin, J. & Koopman, S. J. Time Series Analysis by State Space Methods. Time Series Analysis by State Space Methods (Oxford University Press, Oxford, 2012).

  103. Commandeur, J. J. F. & Koopman, S. J. An Introduction to State Space Time Series Analysis. (Oxford University Press, Incorporated, 2007).

  104. Geweke, J. Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments. in Bayesian Statistics (eds. Bernardo, J. M., Berger, O., Dawid, A. P. & Smith, A. F. M.) vol. 4 169–193 (Clarendon Press, Oxford, 1992).

  105. Raftery, A. E. & Lewis, S. M. Comment: One long run with diagnostics: Implementation strategies for markov chain monte carlo. Stat. Sci. 7, 493–497 (1992).

    Google Scholar 

  106. Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News 6, 7–11 (2006).

    Google Scholar 

  107. GBIF.org. GBIF Occurrence Download https://doi.org/10.15468/dl.k76kgd (2021).

  108. Holmes, E. E., Ward, E. J. & Wills, K. MARSS: Multivariate autoregressive state-space models for analyzing time-series data. R J 4, 11–19 (2012).

    Google Scholar 

  109. Holmes, E. E., Scheuerell, M. D. & Ward, E. J. Detecting a signal from noisy sensors. in Applied Time Series Analysis for Fisheries and Environmental Data. (2021).

Download references

Acknowledgements

We thank Catharina Söderström and Johan Kastlander (CBRN Defense and Security, Swedish Defense Research Agency) for providing access to the air filter archive, and Benedicte Albrectsen and Göran Englund for their feedback on previous versions of this manuscript. We also wish to thank five anonymous reviewers for constructive criticism. We acknowledge support from the Science for Life Laboratory and the National Genomics Infrastructure (NGI) for providing assistance in massive parallel sequencing. The computations were enabled by resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS) and the Swedish National Infrastructure for Computing (SNIC) at UPPMAX and HPC2N, partially funded by the Swedish Research Council through grant agreement nos. 2022-06725 and 2018-05973. Thomas Ågren provided the organism illustrations in Figs. 1–3. Modified Copernicus Climate Change Service information 2020 was used for the catchment area analysis. Neither the European Commission nor the European Center for Medium-Range Weather Forecasts (ECMWF) is responsible for any use that may be made of the Copernicus information or data it contains. This study was supported by Formas (grant agreement nos. 2016-01371: PS, MF; 2019-00579: P.S., T.B., and M.F.; 2021-02155: PS, MF; 2024-01990: P.S., T.B., M.F., and N.S.), together with grants from Vetenskapsrådet (2021-06283: P.S. and M.F.), SciLifeLab Biodiversity fund (NP00048: P.S., M.F., and T.B.), Kempe foundation (JCK-1919: P.S., M.F., and T.B.), Umeå University Industrial research school (P.S.) and Swedish Defense Research Agency (M.F.)

Funding

Open access funding provided by Umea University.

Author information

Authors and Affiliations

Authors

Contributions

P.S., M.F., T.B., and E.K. conceived and designed the study; E.K. and A.M.J. extracted DNA; DSv constructed the database and performed read classification; E.K., A.R.S., D.B., D.S.v. pre-processed the data; A.R.S. designed and implemented the machine learning approach; and H.G. constructed the particle models. A.R.S. and E.K. conducted most of the data analysis, with support from D.S.v., D.B., A.B.S., J.A.V., A.M., D.S.u., B.B., A.N., A.S., N.S., and P.A.E. E.K., A.R.S., D.S.v., B.B., P.S., and N.S. wrote the first draft of the manuscript. All authors contributed intellectual input and approved the final version

Corresponding author

Correspondence to
Per Stenberg.

Ethics declarations

Competing interests

The Authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks David Schmale III and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Descriptions of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Supplementary Data 7

Supplementary Data 8

Supplementary Data 9

Supplementary Data 10

Supplementary Data 11

Supplementary Data 12

Supplementary Data 13

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Sullivan, A.R., Karlsson, E., Svensson, D. et al. Airborne eDNA captures three decades of ecosystem biodiversity.
Nat Commun (2025). https://doi.org/10.1038/s41467-025-67676-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67676-7


Source: Ecology - nature.com

Establishing the phenological development stages of Sophora moorcroftiana using the BBCH scale

Acoustic recordings of underwater vocalizations of Indo-Pacific humpback dolphins in Xiamen Bay, China

Back to Top