in

Chemoautotrophic carbon fixation in thermokarst lakes on the Tibetan Plateau


Abstract

Dissolved organic carbon (DOC) derived from thermokarst lakes is usually considered to be prone to microbial degradation and releases substantial carbon dioxide to the atmosphere, potentially enhancing the positive permafrost carbon (C)-climate feedback. In contrast to this long-term standing view, here we show that dark C fixation exceeds DOC degradation in ~1/3 of the investigated thermokarst lakes on the Tibetan Plateau, based on the combination of large-scale water and sediment sampling across seasons and years, biodegradable DOC experiments and 14C-labeling bicarbonate (NaH14CO3) assimilation incubation experiment. By employing qPCR, amplicon sequencing and metagenomic analyses, we find that microbial C fixation is mainly driven by nitrifying microorganisms via the Calvin-Benson-Bassham cycle carried out by the cbbL gene (encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase). These findings demonstrate that chemoautotrophic C fixation predominates in part of thermokarst lakes, which could partly offset C emissions upon permafrost thaw and thus weaken the positive permafrost C-climate feedback.

Similar content being viewed by others

Enhanced response of soil respiration to experimental warming upon thermokarst formation

Community composition of aquatic fungi across the thawing Arctic

Thermokarst lake drainage halves the temperature sensitivity of CH4 release on the Qinghai-Tibet Plateau

Data availability

All data supporting the findings in this study are available in the figshare database (https://doi.org/10.6084/m9.figshare.30081886.v3)82 and Supplementary Information. The sequence data generated in this study have been deposited in the NCBI Sequence Read Archive (SRA) database under accession number PRJNA1363675. Source data are provided with this paper.

References

  1. Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R. & Bowden, W. B. Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences 12, 3725–3740 (2015).

    Google Scholar 

  2. Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Google Scholar 

  3. Wang, X. et al. Contrasting characteristics, changes, and linkages of permafrost between the Arctic and the Third Pole. Earth Sci. Rev. 230, 104042 (2022).

    Google Scholar 

  4. Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).

    Google Scholar 

  5. Walter Anthony, K. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).

    Google Scholar 

  6. Wik, M., Varner, R. K., Anthony, K. W., Macintyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).

    Google Scholar 

  7. Yang, G. et al. Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau. Nat. Commun. 14, 3121 (2023).

    Google Scholar 

  8. Payandi-Rolland, D. et al. Dissolved organic matter biodegradation along a hydrological continuum in permafrost peatlands. Sci. Total Environ. 749, 141463 (2020).

    Google Scholar 

  9. Schuur, E. A. G. & Mack, M. C. Ecological response to permafrost thaw and consequences for local and global ecosystem services. Annu. Rev. Ecol. Evol. Syst. 49, 279–301 (2018).

    Google Scholar 

  10. Li, Z. et al. Accelerated organic matter decomposition in thermokarst lakes upon carbon and phosphorus inputs. Glob. Change Biol. 29, 6367–6382 (2023).

    Google Scholar 

  11. Vonk, J. E. et al. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis. Biogeosciences 12, 6915–6930 (2015).

    Google Scholar 

  12. Abbott, B. W., Larouche, J. R., Jones, J. B., Bowden, W. B. & Balser, A. W. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. J. Geophys. Res. Biogeosci. 119, 2049–2063 (2014).

    Google Scholar 

  13. Alfreider, A. et al. CO2 assimilation strategies in stratified lakes: diversity and distribution patterns of chemolithoautotrophs. Environ. Microbiol. 19, 2754–2768 (2017).

    Google Scholar 

  14. Cory, R. M., Crump, B. C., Dobkowski, J. A. & Kling, G. W. Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. Proc. Natl. Acad. Sci. USA 110, 3429–3434 (2013).

    Google Scholar 

  15. Cory, R. M., Ward, C. P., Crump, B. C. & Kling, G. W. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345, 925–928 (2014).

    Google Scholar 

  16. Hu, J. et al. Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes. Nat. Commun. 14, 3681 (2023).

    Google Scholar 

  17. Nalven, S. G. et al. Experimental metatranscriptomics reveals the costs and benefits of dissolved organic matter photo-alteration for freshwater microbes. Environ. Microbiol. 22, 3505–3521 (2020).

    Google Scholar 

  18. Raven, J. A. Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquat. Microb. Ecol. 56, 177–192 (2009).

    Google Scholar 

  19. Wei, Z. et al. Sentinel-based inventory of thermokarst lakes and ponds across permafrost landscapes on the Qinghai-Tibet Plateau. Earth Space Sci. 8, e2021EA001950 (2021).

    Google Scholar 

  20. Gao, T. et al. Accelerating permafrost collapse on the eastern Tibetan Plateau. Environ. Res. Lett. 16, 054023 (2021).

    Google Scholar 

  21. Vick-Majors, T. J. & Priscu, J. C. Inorganic carbon fixation in ice-covered lakes of the McMurdo Dry Valleys. Antarctic Sci. 31, 123–132 (2019).

    Google Scholar 

  22. Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E. & Herndl, G. J. Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic. Limnol. Oceanogr. 54, 182–193 (2009).

    Google Scholar 

  23. Dahlback, A., Gelsor, N., Stamnes, J. J. & Gjessing, Y. UV measurements in the 3000-5000 m altitude region in Tibet. J. Geophys. Res. 112, D09308 (2007).

    Google Scholar 

  24. Wickland, K. P. et al. Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: seasonality and importance of inorganic nitrogen. Glob. Biogeochem. Cycles 26, GB0E03 (2012).

    Google Scholar 

  25. Berg, C., Listmann, L., Vandieken, V., Vogts, A. & Jurgens, K. Chemoautotrophic growth of ammonia-oxidizing Thaumarchaeota enriched from a pelagic redox gradient in the Baltic Sea. Front. Microbiol. 5, 786 (2015).

    Google Scholar 

  26. Berg, I. A. et al. Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol. 8, 447–460 (2010).

    Google Scholar 

  27. Yakimov, M. et al. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME J. 5, 945–961 (2011).

    Google Scholar 

  28. Berg, I. A., Kockelkorn, D., Bucket, W. & Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318, 1782–1786 (2007).

    Google Scholar 

  29. Yakimov, M. M., Cono, V. L. & Denaro, R. A first insight into the occurrence and expression of functional amoA and accA genes of autotrophic and ammonia-oxidizing bathypelagic Crenarchaeota of Tyrrhenian Sea. Deep Sea Res. II Top. Stud. Oceanogr. 56, 748–754 (2009).

    Google Scholar 

  30. Offre, P., Nicol, G. W. & Prosser, J. I. Community profiling and quantification of putative autotrophic thaumarchaeal communities in environmental samples. Environ. Microbiol. Rep. 3, 245–253 (2011).

    Google Scholar 

  31. Badger, M. R. & Bek, E. J. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J. Exp. Bot. 59, 1525–1541 (2008).

    Google Scholar 

  32. Urakawa, H. et al. Ammonia availability shapes the seasonal distribution and activity of archaeal and bacterial ammonia oxidizers in the Puget Sound Estuary. Limnol. Oceanogr. 59, 1321–1335 (2015).

    Google Scholar 

  33. Overholt, W. A. et al. Carbon fixation rates in groundwater similar to those in oligotrophic marine systems. Nat. Geosci. 15, 561–567 (2022).

    Google Scholar 

  34. Bochet, O. et al. Iron-oxidizer hotspots formed by intermittent oxic-anoxic fluid mixing in fractured rocks. Nat. Geosci. 13, 149–155 (2020).

    Google Scholar 

  35. Mardanov, A. V., Beletsky, A. V., Kadnikov, V. T., Slobodkin, A. I. & Ravin, N. V. Genome Analysis of thermosulfurimonas dismutans, the first thermophilic sulfur-disproportionating bacterium of the phylum thermodesulfobacteria. Front. Microbiol. 7, 950 (2016).

    Google Scholar 

  36. Wasmund, K., Mumann, M. & Loy, A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environ. Microbiol. Rep. 9, 323–344 (2017).

    Google Scholar 

  37. Ding, J. et al. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Glob. Change Biol. 22, 2688–2701 (2016).

    Google Scholar 

  38. Wang, T. et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6, eaaz3513 (2020).

    Google Scholar 

  39. Wang, D. et al. A 1km resolution soil organic carbon dataset for frozen ground in the Third Pole. Earth Sys. Sci. Data 13, 3453–3465 (2021).

    Google Scholar 

  40. Chen, L. et al. Permafrost carbon cycle and its dynamics on the Tibetan Plateau. Sci. China Life Sci. 67, 1833–1848 (2024).

    Google Scholar 

  41. Editorial Committee for Vegetation Map of China. Vegetation Atlas of China (Science Press, 2001).

  42. Zhang, J., Wang, J., Chen, W., Li, B. & Zhao, K. Vegetation of Xizang (Tibet) (Science Press, 1988).

  43. Zhao, L. & Sheng, Y. Permafrost and its changes on the Qinghai-Tibetan Plateau (Science Press, 2019).

  44. Bai, Y. et al. Heating up the roof of the world: tracing the impacts of in-situ warming on carbon cycle in alpine grasslands on the Tibetan Plateau. Nat. Sci. Rev. 12, nwae371 (2025).

    Google Scholar 

  45. Fu, Z. et al. Non-temperature environmental drivers modulate warming-induced 21st-century permafrost degradation on the Tibetan Plateau. Nat. Commun. 16, 7556 (2025).

    Google Scholar 

  46. Mu, M. et al. Thermokarst lake changes along the Qinghai-Tibet Highway during 1991-2020. Geomorphology 441, 108895 (2023).

    Google Scholar 

  47. Kang, L. et al. Patterns and drivers of prokaryotic communities in thermokarst lake water across Northern Hemisphere. Glob. Ecol. Biogeogr. 32, 2244–2256 (2023).

    Google Scholar 

  48. Santoro, A. L., Bastviken, D., Tranvik, L. & Enrich-Prast, A. Simultaneous measurements of dark carbon fixation and bacterial production in lake sediment. Limnol. Oceanogr. Methods 11, 298–303 (2013).

    Google Scholar 

  49. Dyksma, S., Bischof, K., Fuchs, B. M., Hoffmann, K. & Mumann, M. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 10, 1939–1953 (2016).

    Google Scholar 

  50. Tolli, J. & King, G. M. Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils. Appl. Environ. Microbiol. 71, 8411–8418 (2005).

    Google Scholar 

  51. Alfreider, A., Vogt, C., Hoffmannw, D. & Babel, W. Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from groundwater and aquifer microorganisms. Microb. Ecol. 45, 317–328 (2003).

    Google Scholar 

  52. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  53. Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Google Scholar 

  54. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Google Scholar 

  55. Fish, J. et al. FunGene: the functional gene pipeline and repository. Front. Microbiol. 4, 1–14 (2013).

    Google Scholar 

  56. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Google Scholar 

  57. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Google Scholar 

  58. Kang, L. et al. Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau. Nat. Commun. 15, 5920 (2024).

    Google Scholar 

  59. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Google Scholar 

  60. Dinghua, L., Chi-Man, L., Ruibang, L., Kunihiko, S. & Tak-Wah, L. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Google Scholar 

  61. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Google Scholar 

  62. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Google Scholar 

  63. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Google Scholar 

  64. Cantalapiedra, C. P., Ana, H.-P., Ivica, L., Peer, B. & Jaime, H. C. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Google Scholar 

  65. Uritskiy, G. V., Jocelyne, D. R. & James, T. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

    Google Scholar 

  66. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    Google Scholar 

  67. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Google Scholar 

  68. Aroney, S. T. N. et al. CoverM: read alignment statistics for metagenomics. Bioinformatics 41, p1 (2025).

    Google Scholar 

  69. Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    Google Scholar 

  70. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, 256–259 (2019).

    Google Scholar 

  71. Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).

    Google Scholar 

  72. Mcilvin, M. R. & Altabet, M. A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem. 77, 5589–5595 (2005).

    Google Scholar 

  73. Anastácio, A. S., Harris, B., Yoo, H. I., Fabris, J. D. & Stucki, J. W. Limitations of the ferrozine method for quantitative assay of mineral systems for ferrous and total iron. Geochim. Cosmochim. Acta 72, 5001–5008 (2008).

    Google Scholar 

  74. Zopfi, J., Ferdelman, T. G. & Fossing, H. Distribution and fate of sulfur intermediates-sulfite, tetrathionate, thiosulfate, and elemental sulfur-in marine sediments. Geol. Soc. Am. 379, 97–116 (2004).

    Google Scholar 

  75. Drake, T. W., Wickland, K. P., Spencer, R. G., Mcknight, D. M. & Striegl, R. G. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proc. Natl. Acad. Sci. USA 112, 13946–13951 (2015).

    Google Scholar 

  76. Weishaar, J. L. et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37, 4702–4708 (2003).

    Google Scholar 

  77. Helms, J. R. et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 55, 955–969 (2008).

    Google Scholar 

  78. Ohno, T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 36, 742–746 (2002).

    Google Scholar 

  79. Murphy, K. R., Stedmon, C. A., Graeber, D. & Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 5, 6557–6566 (2013).

    Google Scholar 

  80. Fellman, J. B., Hood, E. & Spencer, R. G. M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol. Oceanogr. 55, 2452–2462 (2010).

    Google Scholar 

  81. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. (2022).

  82. Liu, F. et al. Chemoautotrophic carbon fixation in thermokarst lakes on the Tibetan Plateau. Figshare https://doi.org/10.6084/m9.figshare.30081886.v3 (2025).

  83. Zou, D., Zhao, L., Sheng, Y., Chen, J. & Cheng, G. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11, 2527–2542 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Isotope Laboratory Platform from the Institute of Biophysics, Chinese Academy of Sciences, and the Analytical and Testing Center of Beijing Normal University for supporting NaH14CO3 assimilation experiment. The authors would also be grateful to Drs. Hongjie Zhang (from Chinese Academy of Sciences), Guohua Jiang and Jianhua Huang (both are from Beijing Normal University) for their technical assistance with the isotopic analyses. This work was supported by the National Natural Science Foundation of China (32588202, 32425004, and 32571870), the National Key Research and Development Program of China (2022YFF0801903), the New Cornerstone Science Foundation through the XPLORER PRIZE, and the Fundamental Research Funds of the Chinese Academy of Forestry (CAFYBB2023QA004 and CAFYBB2024ZA034).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. conceived the idea. Y.Y., F.L., and L.K. designed the study. L.K., Z.L., F.L., W.Z., W.X., and X.L. conducted the field water and sediment sampling. F.L., L.K., Z.L., and W.X. performed the experiments. F.L. and L.K. analyzed the data. F.L., Y.Y., and L.K. wrote the manuscript with input from Z.L., J.P., B.W.A., L.C., S.Q., D.Z., and Y.P.

Corresponding author

Correspondence to
Yuanhe Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Karl Romanowicz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Liu, F., Kang, L., Li, Z. et al. Chemoautotrophic carbon fixation in thermokarst lakes on the Tibetan Plateau.
Nat Commun (2025). https://doi.org/10.1038/s41467-025-67478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67478-x


Source: Ecology - nature.com

Telomere-to-Telomere genome assembly of an endangered tree Berchemiella wilsonii (Rhamnaceae)

Behavioural plasticity of a pest species may aggravate global wheat yield loss under climate change

Back to Top