in

Genetic connectivity and admixture zones shape the spread of African swine fever in wild Boar populations in North-western Italy


Abstract

Host population genetics can shape disease spread in wildlife, yet it is rarely integrated into epizootic investigations. To explore whether connectivity patterns in wild boar populations may have influenced the spread of African swine fever (ASF) in north-western Italy, we characterised the genetic structure of the local population. Microsatellite genotyping was performed on 578 wild boar sampled from 26 hunting districts across thirteen loci and analysed using Bayesian clustering, correspondence analysis and spatial PCA. In parallel, 2,414 ASF detections recorded between December 2021 and March 2025 were examined through retrospective spatiotemporal scan statistics and directional spread analysis. We identified two main genetic clusters, one largely corresponding to Piedmont and the other more prevalent in Liguria regions, with zones of admixture along their border and a connectivity corridor through the Ligurian Apennines. Over the 38-month period, 16 significant ASF clusters were detected. The outbreak spread eastward and north-eastward from the initial focus at the Liguria-Piedmont border. Four clusters showed significant directionality, and recurrent clustering in certain areas suggested local persistence. Notably, several ASF clusters overlapped with genetic admixture zones and connectivity hubs. Our findings suggest two mechanisms underpinning disease spread: short-range transmission within genetically related groups and longer-range movement along ecological corridors. Embedding genetic monitoring into routine surveillance may enhance the effectiveness of ASF control by guiding carcass removal, search efforts and spatial prioritisation toward high-risk transition zones.

Similar content being viewed by others

Landscape connectivity for predicting the spread of ASF in the European wild boar population

Spatial prediction of wild boar distribution in Thailand applications for African swine fever prevention and control

The diffusion metrics of African swine fever in wild boar

Data availability

All R scripts and codes used for the analyses in this study, along with the raw genetic dataset, are provided as Supplementary Materials and are openly available for reproducibility and further research use.The disease surveillance data used for the ASF analyses are not publicly available, as they are owned and managed by the competent veterinary authorities. Access to these data can be requested from the corresponding author and may be granted upon reasonable justification and with permission from the data holders.All other materials supporting the findings of this study are included in the Supplementary Information files.

References

  1. Slatkin, M. Gene flow and the geographic structure of natural populations. Science 236, 787–792 (1987).

    Google Scholar 

  2. Hohenlohe, P. A. & Funk, W. C. Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82 (2021).

    Google Scholar 

  3. Pepin, K. M., Golnar, A. & Podgórski, T. Social structure defines Spatial transmission of African swine fever in wild Boar. J. R Soc. Interface. 18, 20200761 (2021).

    Google Scholar 

  4. Sah, P., Mann, J. & Bansal, S. Disease implications of animal social network structure: A synthesis across social systems. J. Anim. Ecol. 87, 546–558 (2018).

    Google Scholar 

  5. Pérez-González, J., Carranza, J., Martínez, R. & Benítez-Medina, J. M. Host genetic diversity and infectious Diseases. Focus on wild Boar, red deer and tuberculosis. Animals 11, 1630 (2021).

    Google Scholar 

  6. Blanchong, J. A., Robinson, S. J., Samuel, M. D. & Foster, J. T. Application of genetics and genomics to wildlife epidemiology. J. Wildl. Manag. 80, 593–608 (2016).

    Google Scholar 

  7. Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in europe: contexts, causes, monitoring and management recommendations. Mammal Rev. 51, 95–108 (2021).

    Google Scholar 

  8. Sáaez-Royuela, C. & Telleríia, J. L. The increased population of the wild Boar (Sus scrofa L.) in Europe. Mammal Rev. 16, 97–101 (1986).

    Google Scholar 

  9. Massei, G. et al. Wild Boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag Sci. 71, 492–500 (2015).

    Google Scholar 

  10. Marin, C., Werno, J., Le Campion, G. & Couderchet, L. Navigating discreetly: Spatial ecology of urban wild Boar in Bordeaux city’s landscape of fear, France. Sci. Total Environ. 954, 176436 (2024).

    Google Scholar 

  11. Consorci del Parc Natural de la Serra de Collserola. Characteristics of wild Boar (Sus scrofa) habituation to urban areas in the collserola natural park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 35, 221–233 (2012).

    Google Scholar 

  12. Stillfried, M. et al. Do cities represent sources, sinks or isolated Islands for urban wild Boar population structure? J. Appl. Ecol. 54, 272–281 (2017).

    Google Scholar 

  13. Giménez-Anaya, A., Herrero, J., Rosell, C. & Couto, S. García-Serrano, A. Food habits of wild boars (Sus Scrofa) in a mediterranean coastal wetland. Wetlands 28, 197–203 (2008).

    Google Scholar 

  14. Schley, L., Dufrêne, M., Krier, A. & Frantz, A. C. Patterns of crop damage by wild Boar (Sus scrofa)in Luxembourg over a 10-year period. Eur. J. Wildl. Res. 54, 589–599 (2008).

    Google Scholar 

  15. Morelle, K., Fattebert, J., Mengal, C. & Lejeune, P. Invading or recolonizing? Patterns and drivers of wild Boar population expansion into Belgian agroecosystems. Agric. Ecosyst. Environ. 222, 267–275 (2016).

    Google Scholar 

  16. Graitson, E., Barbraud, C. & Bonnet, X. Catastrophic impact of wild boars: insufficient hunting pressure pushes snakes to the Brink. Anim. Conserv. 22, 165–176 (2019).

    Google Scholar 

  17. Meng, X. J., Lindsay, D. S. & Sriranganathan, N. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R Soc. B Biol. Sci. 364, 2697–2707 (2009).

    Google Scholar 

  18. Ruiz-Fons, F. A. Review of the current status of relevant zoonotic pathogens in wild swine (Sus scrofa) populations: changes modulating the risk of transmission to humans. Transbound. Emerg. Dis. 64, 68–88 (2017).

    Google Scholar 

  19. Sánchez-Cordón, P. J., Montoya, M., Reis, A. L. & Dixon, L. K. African swine fever: A re-emerging viral disease threatening the global pig industry. Vet. J. 233, 41–48 (2018).

    Google Scholar 

  20. Dei Giudici, S. et al. The Long-Jumping of African swine fever: first genotype II notified in Sardinia, Italy. Viruses 16, 32 (2023).

    Google Scholar 

  21. Varsani, A. et al. Summary of taxonomy changes ratified by the international committee on taxonomy of viruses (ICTV) from the animal DNA viruses and retroviruses Subcommittee, 2025. J Gen. Virol 106, (2025).

  22. Berthe, F. The global economic impact of ASF: -EN- -FR- Impact économique mondial de la peste porcine africaine -ES- El impacto económico mundial de la peste porcina africana. Bull. OIE 1–2 (2020). (2020).

  23. Casal, J. et al. Evaluation of the economic impact of classical and African swine fever epidemics using OutCosT, a new spreadsheet-based tool. Transbound Emerg. Dis 69, (2022).

  24. European Food Safety Authority (EFSA). et al. Epidemiological analysis of African swine fever in the European union during 2023. EFSA J 22, (2024).

  25. Iscaro, C. et al. January 2022: index case of new African swine fever incursion in Mainland Italy. Transbound. Emerg. Dis. 69, 1707–1711 (2022).

    Google Scholar 

  26. Pavone, S., Iscaro, C., Dettori, A. & Feliziani, F. African swine fever: the state of the Art in Italy. Animals 13, 2998 (2023).

    Google Scholar 

  27. Vitale, N. et al. Measuring transboundary disease spread – ASF in wild boars straddling Piedmont and Liguria. Microb. Risk Anal. 27–28, 100329 (2024).

    Google Scholar 

  28. Chenais, E., Ståhl, K., Guberti, V. & Depner, K. Identification of wild Boar–Habitat epidemiologic cycle in African swine fever epizootic. Emerg. Infect. Dis. 24, 810–812 (2018).

    Google Scholar 

  29. Vander Wal, E., Garant, D. & Pelletier, F. Evolutionary perspectives on wildlife disease: concepts and applications. Evol. Appl. 7, 715–722 (2014).

    Google Scholar 

  30. Kamath, P. L. et al. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nat. Commun. 7, 11448 (2016).

    Google Scholar 

  31. Ishiguro, N. & Nishimura, M. Genetic profile and serosurvey for virus infections of Japanese wild boars in Shikoku Island. J. Vet. Med. Sci. 67, 563–568 (2005).

    Google Scholar 

  32. Acevedo-Whitehouse, K. et al. Genetic resistance to bovine tuberculosis in the Iberian wild Boar. Mol. Ecol. 14, 3209–3217 (2005).

    Google Scholar 

  33. Queirós, J., Alves, P. C., Vicente, J., Gortázar, C. & De La Fuente, J. Genome-wide associations identify novel candidate loci associated with genetic susceptibility to tuberculosis in wild boar. Sci. Rep. 8, (2018). (1980).

  34. Podgórski, T., Apollonio, M. & Keuling, O. Contact rates in wild Boar populations: implications for disease transmission. J. Wildl. Manag. 82, 1210–1218 (2018).

    Google Scholar 

  35. Reiner, G., Rumpel, M., Zimmer, K. & Willems, H. Genetic differentiation of wild Boar populations in a region endangered by African swine fever. J. Wildl. Manag. 85, 423–436 (2021).

    Google Scholar 

  36. Griciuvienė, L., Janeliūnas, Ž., Pilevičienė, S., Jurgelevičius, V. & Paulauskas, A. Changes in the genetic structure of lithuania’s wild Boar (Sus scrofa) population following the outbreak of African swine fever. Genes 13, 1561 (2022).

    Google Scholar 

  37. Simon, U. et al. Genetic differentiation of wild Boar populations in a region affected by African swine fever. Eur. J. Wildl. Res. 70, 54 (2024).

    Google Scholar 

  38. Saito, R. et al. Exploring the Genetic Basis of Wild Boar (Sus scrofa) and Its Connection to Classical Swine Fever Spread. Transbound. Emerg. Dis. 9881511 (2025). (2025).

  39. Faustini, G. et al. Habitat suitability mapping and landscape connectivity analysis to predict African swine fever spread in wild Boar populations: A focus on Northern Italy. PLOS ONE. 20, e0317577 (2025).

    Google Scholar 

  40. Goicolea, T. et al. Landscape connectivity for predicting the spread of ASF in the European wild Boar population. Sci. Rep. 14, 3414 (2024).

    Google Scholar 

  41. Lentz, H. H. K., Bergmann, H., Conraths, F. J., Schulz, J. & Sauter-Louis, C. The diffusion metrics of African swine fever in wild Boar. Sci. Rep. 13, 15110 (2023).

    Google Scholar 

  42. Pepin, K. M., Golnar, A. J., Abdo, Z. & Podgórski, T. Ecological drivers of African swine fever virus persistence in wild Boar populations: insight for control. Ecol. Evol. 10, 2846–2859 (2020).

    Google Scholar 

  43. Gervasi, V. & Guberti, V. African swine fever endemic persistence in wild Boar populations: key mechanisms explored through modelling. Transbound. Emerg. Dis. 68, 2812–2825 (2021).

    Google Scholar 

  44. Morelle, K. et al. Accelerometer-based detection of African swine fever infection in wild Boar. Proc. R Soc. B Biol. Sci. 290, 20231396 (2023).

    Google Scholar 

  45. Podgórski, T. & Śmietanka, K. Do wild Boar movements drive the spread of African swine fever? Transbound. Emerg. Dis. 65, 1588–1596 (2018).

    Google Scholar 

  46. Vargas-Amado, M. E., Vidondo, B., Fischer, C., Pisano, S. R. R. & Grütter, R. Potential effect of managing connectivity to contain disease spread among free‐ranging wild Boar (Sus scrofa) in disparate landscapes. Ecol. Solut. Evid. 4, e12270 (2023).

    Google Scholar 

  47. Podgórski, T. et al. How do genetic relatedness and Spatial proximity shape African swine fever infections in wild boar? Transbound. Emerg. Dis. 69, 2656–2666 (2022).

    Google Scholar 

  48. Mebus, C. et al. Survival of several Porcine viruses in different Spanish dry-cured meat products. Food Chem. 59, 555–559 (1997).

    Google Scholar 

  49. Probst, C., Globig, A., Knoll, B., Conraths, F. J. & Depner, K. Behaviour of free ranging wild Boar towards their dead fellows: potential implications for the transmission of African swine fever. R Soc. Open. Sci. 4, 170054 (2017).

    Google Scholar 

  50. Carlson, J. et al. Stability of African swine fever virus in soil and options to mitigate the potential transmission risk. Pathogens 9, 977 (2020).

    Google Scholar 

  51. Fischer, M., Hühr, J., Blome, S., Conraths, F. J. & Probst, C. Stability of African Swine Fever Virus in Carcasses of Domestic Pigs and Wild Boar Experimentally Infected with the ASFV Estonia 2014 Isolate. Viruses 12, 1118 (2020).

  52. Regione Piemonte. Studio delle caratteristiche genetiche delle popolazioni di cinghiale presenti in Piemonte. Laboratorio Chimico, Camera di Commercio Torino & Università degli Studi di Sassari, Turin, Italy. (2008). Retrieved from http://www.regione.piemonte.it/agri/area_tecnico_scientifica/osserv_faun/dwd/prog_ricerca/cinghiale.pdf

  53. Scandura, M. et al. Resilience to historical human manipulations in the genomic variation of Italian wild Boar populations. Front. Ecol. Evol. 10, 833081 (2022).

    Google Scholar 

  54. Vilaça, S. T. et al. Mitochondrial phylogeography of the European wild boar: the effect of climate on genetic diversity and Spatial lineage sorting across Europe. J. Biogeogr. 41, 987–998 (2014).

    Google Scholar 

  55. ARPA Piemonte. Arpa Piemonte. Clima ed indicatori climatici del Piemonte. Available online: (2010). http://www.idrologia.polito.it/web2/open-data/cd_Dati_Regione_Piemonte/50_anni_dati_meteo_Piemonte/clima_ed_indicatori.htm (Accessed on 21 Feb 2025). (2010).

  56. ARPAL – Centro funzionale meteoidrologico di protezione civile. Atlante climatico della Liguria. Genova, Italia. Available online: (2013). https://www.arpal.liguria.it/tematiche/meteo/pubblicazioni-bis/analisi-climatologiche/atlante-climatico-della-liguria.html (Accessed on 21 Feb 2025).

  57. StataCorp Stata Statistical Software: Release 18. College Station (StataCorp LLC, 2023).

  58. FAO. Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines. No. 9. Rome. Available online: (2011). https://www.fao.org/4/i2413e/i2413e00.htm (Accessed on 14/04/2025).

  59. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (2024). https://www.R-project.org

  60. Adamack, A. T. & Gruber, B. P op G En R Eport : simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).

    Google Scholar 

  61. Gruber, B. & Adamack, A. T. PopGenReport: a simple framework to analyse population and landscape genetic data. R package version 3.1. (2025). https://cran.rproject.org/web/packages/PopGenReport/PopGenReport.pdf. Accessed 17 March 2025.

  62. Paradis, E. Pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).

    Google Scholar 

  63. Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr : an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).

  64. Weir, B. S. & Cockerham, C. C. Estimating f-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    Google Scholar 

  65. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    Google Scholar 

  66. Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).

    Google Scholar 

  67. Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild Boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J. Mammal. 94, 109–119 (2013).

    Google Scholar 

  68. Garza, S. J., Tabak, M. A., Miller, R. S., Farnsworth, M. L. & Burdett, C. L. Abiotic and biotic influences on home-range size of wild pigs (Sus scrofa). J. Mammal. 99, 97–107 (2018).

    Google Scholar 

  69. Clontz, L. M., Pepin, K. M., VerCauteren, K. C. & Beasley, J. C. Influence of biotic and abiotic factors on home range size and shape of invasive wild pigs (Sus scrofa). Pest Manag Sci. 78, 914–928 (2022).

    Google Scholar 

  70. Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

    Google Scholar 

  71. Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure : a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    Google Scholar 

  72. Criscuolo, N. G., Angelini, C. & StructuRly A novel Shiny app to produce comprehensive, detailed and interactive plots for population genetic analysis. PLOS ONE. 15, e0229330 (2020).

    Google Scholar 

  73. Thioulouse, J. et al. Multivariate Analysis of Ecological Data with Ade4 (Springer New York, 2018). https://doi.org/10.1007/978-1-4939-8850-1

  74. Jombart, T. & Ahmed, I. Adegenet 1.3-1 : new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).

    Google Scholar 

  75. Jombart, T. Adegenet : a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    Google Scholar 

  76. Montano, V. & Jombart, T. An eigenvalue test for Spatial principal component analysis. BMC Bioinform. 18, 562 (2017).

    Google Scholar 

  77. Fernández-Pinero, J. et al. Molecular diagnosis of African swine fever by a new Real-Time PCR using universal probe library: UPL PCR for African swine fever virus. Transbound. Emerg. Dis. 60, 48–58 (2013).

    Google Scholar 

  78. Kulldorff, M., Heffernan, R., Hartman, J., Assunção, R. & Mostashari, F. A Space–Time permutation scan statistic for disease outbreak detection. PLoS Med. 2, e59 (2005).

    Google Scholar 

  79. Kulldorff, M. SaTScanTM User Guide for Version 10.1. (2022). https://www.satscan.org/

  80. Agostinelli, C. & Lund, U. R package ‘circular’: Circular Statistics (version 0.5-1). (2024). Retrieved from https://CRAN.R-project.org/package=circular

  81. Tsagris, M. et al. Directional: A collection of functions for directional data analysis (Version 7.1) [R package]. Retrieved from https://CRAN.R-project.org/package=Directional. https://doi.org/10.32614/CRAN.package.Directional. (2025).

Download references

Funding

This work was supported by the World Organisation for Animal Health (WOAH) under the grant “ASF control: from theory to practice” (WOAH 2024; CUP D53C24001660005).

Author information

Authors and Affiliations

Authors

Contributions

Arianna Meletiadis, Alessandro Dondo, Riccardo Orusa, Angelo Ferrari, Elena Bozzetta and Pier Luigi Acutis conceived the idea. Arianna Meletiadis, Aitor Garcia-Vozmediano, Nicoletta Vitale, Cristiana Maurella, Manuele Massimino and Giuseppe Ru carried out the theoretical analysis. Arianna Meletiadis, Maria Vittoria Riina, Barbara Moroni, Simona Zoppi, Maria Goria and Elisabetta Razzuoli performed the laboratory analyses. Arianna Meletiadis, Aitor Garcia-Vozmediano, Nicoletta Vitale and Matteo Riccardo Di Nicola wrote the first draft of the manuscript. All authors contributed to the revision and editing of the manuscript.

Corresponding authors

Correspondence to
Aitor Garcia-Vozmediano or Matteo Riccardo Di Nicola.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approvement

This study did not involve experiments on live vertebrates and therefore did not require approval by an institutional animal care and use committee. All procedures were conducted in accordance with relevant institutional and national guidelines and regulations. The ARRIVE guidelines are not applicable to this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Meletiadis, A., Garcia-Vozmediano, A., Riina, M.V. et al. Genetic connectivity and admixture zones shape the spread of African swine fever in wild Boar populations in North-western Italy.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-32491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-32491-z


Source: Ecology - nature.com

Carbon dynamics of a controlled peatland rewetting experiment in the Norwegian boreal zone

Relatively open vegetation landscapes promoted early Pleistocene hominin evolution

Back to Top