in

Global coral genomic vulnerability explains recent reef losses


Abstract

The dramatic decline of reef-building corals calls for a better understanding of coral adaptation to ocean warming. Here, we characterize genetic diversity of the widespread genus Acropora by building a genomic database of 595 coral samples from different oceanic regions—from the Great Barrier Reef to the Persian Gulf. Through genome-environment associations, we find that different Acropora species show parallel evolutionary signals of heat-adaptation in the same genomic regions, pointing to genes associated with molecular heat shock responses and symbiosis. We then project the present and the predicted future distribution of heat-adapted genotypes across reefs worldwide. Reefs projected with low frequency of heat-adapted genotypes display higher rates of Acropora decline, indicating a potential genomic vulnerability to heat exposure. Our projections also suggest a transition where heat-adapted genotypes will spread at least until 2040. However, this transition will likely involve mass mortality of entire non-adapted populations and a consequent erosion of Acropora genetic diversity. This genetic diversity loss could hinder the capacity of Acropora to adapt to the more extreme heatwaves projected beyond 2040. Genomic vulnerability and genetic diversity loss estimates can be used to reassess which coral reefs are at risk and their conservation.

Data availability

Genomic data used in this study are publicly available in NCBI, for the full list of accession numbers and data links please see Supplementary Table 1. Processed data are available at Zenodo81 (https://doi.org/10.5281/zenodo.10838947). Supplementary Data 1 displays the list of the 85 genomic windows where genotype-environment associations were repeatedly found in different datasets.

Code availability

Code to reproduce the analysis is available at Zenodo81 (https://doi.org/10.5281/zenodo.10838947).

References

  1. Souter, D. et al. Status of coral reefs of the world: 2020. (Australian government, United Nations Environment Program (UNEP), 2021).

  2. Spalding, M., Ravilious, C. & Green, E. World atlas of coral reefs. (University of California Press, Berkeley, USA, 2001).

  3. Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).

    Google Scholar 

  4. Howells, E. J., Abrego, D., Meyer, E., Kirk, N. L. & Burt, J. A. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. Glob. Chang. Biol. 22, 2702–2714 (2016).

    Google Scholar 

  5. Selmoni, O. et al. Seascape genomics reveals candidate molecular targets of heat stress adaptation in three coral species. Mol. Ecol. 30, 1892–1906 (2021).

    Google Scholar 

  6. Thomas, L. et al. Spatially varying selection between habitats drives physiological shifts and local adaptation in a broadcast spawning coral on a remote atoll in Western Australia. Sci Adv 8, eabl9185 (2022).

    Google Scholar 

  7. Selmoni, O., Rochat, E., Lecellier, G., Berteaux-Lecellier, V. & Joost, S. Seascape genomics as a new tool to empower coral reef conservation strategies: An example on north-western Pacific Acropora digitifera. Evol. Appl. 13, 1923–1938 (2020).

    Google Scholar 

  8. Bay, R. A. & Palumbi, S. R. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. 24, 2952–2956 (2014).

    Google Scholar 

  9. Fuller, Z. L. et al. Population genetics of the coral acropora millepora: Toward genomic prediction of bleaching. Science 369, eaba4674 (2020).

    Google Scholar 

  10. Cooke, I. et al. Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts. Sci Adv 6, eabc6318 (2020).

    Google Scholar 

  11. Jin, Y. K. et al. Genetic markers for antioxidant capacity in a reef-building coral. Sci Adv 2, e1500842 (2016).

    Google Scholar 

  12. Selmoni, O., Bay, L. K., Exposito-Alonso, M. & Cleves, P. A. Finding genes and pathways that underlie coral adaptation. Trends Genet. 40, 213–227 (2024).

    Google Scholar 

  13. Skirving, W. et al. Coraltemp and the coral reef watch coral bleaching heat stress product suite version 3.1. Remote Sensing 12, 3856 (2020).

    Google Scholar 

  14. Riginos, C., Crandall, E. D., Liggins, L., Bongaerts, P. & Treml, E. A. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr. Zool. 62, 581–601 (2016).

    Google Scholar 

  15. Rellstab, C., Dauphin, B. & Exposito-Alonso, M. Prospects and limitations of genomic offset in conservation management. Evol. Appl. 14, 1202–1212 (2021).

    Google Scholar 

  16. Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24, 4348–4370 (2015).

    Google Scholar 

  17. Booker, T. R., Yeaman, S. & Whitlock, M. C. Using genome scans to identify genes used repeatedly for adaptation. Evolution 77, 801–811 (2023).

    Google Scholar 

  18. Whiting, J. R. et al. The genetic architecture of repeated local adaptation to climate in distantly related plants. Nat. Ecol. Evol. 8, 1933–1947 (2024).

    Google Scholar 

  19. Torquato, F. et al. Population genetic structure of a major reef-building coral species Acropora downingi in northeastern Arabian Peninsula. Coral Reefs 41, 743–752 (2022).

    Google Scholar 

  20. Shinzato, C., Mungpakdee, S., Arakaki, N. & Satoh, N. Genome-wide SNP analysis explains coral diversity and recovery in the Ryukyu Archipelago. Sci. Rep. 5, 18211 (2015).

    Google Scholar 

  21. Drury, C. & Lirman, D. Genotype by environment interactions in coral bleaching. Proc. Biol. Sci. 288, 20210177 (2021).

    Google Scholar 

  22. Matz, M. V., Treml, E. A., Aglyamova, G. V. & Bay, L. K. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genet. 14, e1007220 (2018).

    Google Scholar 

  23. Sedlazeck, F. J., Rescheneder, P. & von Haeseler, A. NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29, 2790–2791 (2013).

    Google Scholar 

  24. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014). 2014 15:11–13.

    Google Scholar 

  25. Exposito-Alonso, M. et al. Genetic diversity loss in the anthropocene. Science 377, 1431–1435 (2022).

    Google Scholar 

  26. García-Urueña, R., Kitchen, S. A. & Schizas, N. V. Fine scale population structure of Acropora palmata and acropora cervicornis in the colombian caribbean. PeerJ 10, e13854 (2022).

    Google Scholar 

  27. van der Ven, R. M., Ratsimbazafy, H. A. & Kochzius, M. Large-scale biogeographic patterns are reflected in the genetic structure of a broadcast spawning stony coral. Coral Reefs 41, 611–624 (2022).

    Google Scholar 

  28. Caye, K., Jumentier, B., Lepeule, J. & François, O. LFMM 2: Fast and accurate inference of gene-environment associations in genome-wide studies. Mol. Biol. Evol. 36, 852–860 (2019).

    Google Scholar 

  29. Selmoni, O., Lecellier, G., Berteaux-Lecellier, V. & Joost, S. The reef environment centralized information system (RECIFS): An integrated geo-environmental database for coral reef research and conservation. Glob. Ecol. Biogeogr. 32, 622–632 (2023).

    Google Scholar 

  30. Liu, G., Strong, A. E. & Skirving, W. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos Trans. Amer. Geophys. Union 84, 137–141 (2003).

    Google Scholar 

  31. Selmoni, O., Vajana, E., Guillaume, A., Rochat, E. & Joost, S. Sampling strategy optimization to increase statistical power in landscape genomics: A simulation-based approach. Mol. Ecol. Resour. 20, 154–169 (2020).

    Google Scholar 

  32. Simillion, C., Liechti, R., Lischer, H. E. L., Ioannidis, V. & Bruggmann, R. Avoiding the pitfalls of gene set enrichment analysis with SetRank. BMC Bioinformatics 18, 151 (2017).

    Google Scholar 

  33. Dixon, G., Abbott, E. & Matz, M. Meta-analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. Mol. Ecol. 29, 2855–2870 (2020).

    Google Scholar 

  34. Rosenzweig, R., Nillegoda, N. B., Mayer, M. P. & Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 20, 665–680 (2019).

    Google Scholar 

  35. Louis, Y. D. et al. Local acclimatisation-driven differential gene and protein expression patterns of Hsp70 in Acropora muricata: Implications for coral tolerance to bleaching. Mol. Ecol. 29, 4382–4394 (2020).

    Google Scholar 

  36. van Oppen, M. J. H. & Lough, J. M. Synthesis: Coral bleaching — Patterns, processes, causes and consequences. in coral bleaching: Patterns, processes, causes and consequences (eds. van Oppen, M. J. H. & Lough, J. M.) 175–176 (Springer berlin heidelberg, berlin, heidelberg, 2009).

  37. Matthews, J. L. et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc. Natl. Acad. Sci. USA. 114, 13194–13199 (2017).

    Google Scholar 

  38. Matthews, J. L. et al. Partner switching and metabolic flux in a model cnidarian–dinoflagellate symbiosis. Proceedings of the Royal Society B: Biological Sciences 285, 20182336 (2018).

    Google Scholar 

  39. Hillyer, K. E., Dias, D., Lutz, A., Roessner, U. & Davy, S. K. 13C metabolomics reveals widespread change in carbon fate during coral bleaching. Metabolomics 14, 12 (2017).

    Google Scholar 

  40. Hillyer, K. E. et al. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera. Coral Reefs 36, 105–118 (2017).

    Google Scholar 

  41. González-Pech, R. A. et al. Physiological factors facilitating the persistence of Pocillopora aliciae and Plesiastrea versipora in temperate reefs of south-eastern australia under ocean warming. Coral Reefs 41, 1239–1253 (2022).

    Google Scholar 

  42. Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl. Acad. Sci. USA. 118, e2022653118 (2021).

    Google Scholar 

  43. Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).

    Google Scholar 

  44. Pinsky, M. L., Clark, R. D. & Bos, J. T. Coral Reef Population Genomics in an Age of Global Change. Annu. Rev. Genet. 57, 87–115 (2023).

    Google Scholar 

  45. Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).

    Google Scholar 

  46. van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).

    Google Scholar 

  47. McClanahan, T. R. et al. Highly variable taxa-specific coral bleaching responses to thermal stresses. Mar. Ecol. Prog. Ser. 648, 135–151 (2020).

    Google Scholar 

  48. McClanahan, T. R. et al. Large geographic variability in the resistance of corals to thermal stress. Glob. Ecol. Biogeogr. 29, 2229–2247 (2020).

    Google Scholar 

  49. González-Rivero, M. et al. The catlin seaview survey – kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquat. Conserv. 24, 184–198 (2014).

    Google Scholar 

  50. Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).

    Google Scholar 

  51. Renema, W. et al. Are coral reefs victims of their own past success?. Sci Adv 2, e1500850 (2016).

    Google Scholar 

  52. Mellin, C. et al. Cumulative risk of future bleaching for the world’s coral reefs. Sci Adv 10, eadn9660 (2024).

    Google Scholar 

  53. Williams, D., Nedimyer, K., Bright, A. & Ladd, M. Genotypic inventory and impact of the 2023 marine heatwave on Acropora palmata (elkhorn coral) populations in the Upper Florida Keys, USA: 2020-2023 (National Oceanic and Atmospheric Administration, USA, 2024) https://doi.org/10.25923/37C0-X182.

  54. Logan, C. A., Dunne, J. P., Ryan, J. S., Baskett, M. L. & Donner, S. D. Quantifying global potential for coral evolutionary response to climate change. Nat. Clim. Chang. 11, 537–542 (2021).

    Google Scholar 

  55. Fagan, W. F. & Holmes, E. E. Quantifying the extinction vortex. Ecol. Lett. 9, 51–60 (2006).

    Google Scholar 

  56. Andrello, M. et al. A global map of human pressures on tropical coral reefs. Conserv. Lett. 15, https://doi.org/10.1111/conl.12858 (2022).

  57. Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 6097 (2020).

    Google Scholar 

  58. UNEP-WCMC & IUCN. The World Database on Protected Areas (WDPA). (2020).

  59. Beyer, H. L. et al. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 11, e12587 (2018).

    Google Scholar 

  60. Drury, C. et al. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity. Ecol. Evol. 7, 6188–6200 (2017).

    Google Scholar 

  61. Leinonen, R., Sugawara, H., Shumway, M. & Collaboration, I. N. S. D. The sequence read archive. Nucleic Acids Res. 39, D19–D21 (2010).

    Google Scholar 

  62. Andrews, S. FASTQC: A quality control tool for high throughput sequence data. (2010).

  63. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Google Scholar 

  64. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Google Scholar 

  65. McKenna, A. et al. The genome analysis toolkit: A mapreduce framework for analyzing next-generation dna sequencing data. Genome Res. 20, 1297–1303 (2010).

    Google Scholar 

  66. Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Google Scholar 

  67. Goudet, J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).

    Google Scholar 

  68. Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).

    Google Scholar 

  69. Liu, G. et al. Reef-Scale Thermal stress monitoring of coral ecosystems: New 5-km global products from noaa coral reef watch. Remote Sensing 6, 11579–11606 (2014).

    Google Scholar 

  70. Frichot, E. & François, O. L. E. A. An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).

    Google Scholar 

  71. Storey, J. D. The positive false discovery rate: A bayesian interpretation and the q-Value. Ann. Stat. 31, 2013–2035 (2003).

    Google Scholar 

  72. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Google Scholar 

  73. Bateman, A. et al. UniProt: A hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).

    Google Scholar 

  74. Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Google Scholar 

  75. Barton, K. MuMIn: Multi-model inference. (2009).

  76. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

    Google Scholar 

  77. Unep-Wcmc, WorldFish Centre, World resources institute & the nature conservancy. Global distribution of warm-water coral reefs, compiled from multiple sources including the millennium coral reef mapping project. (UN environment world conservation monitoring centre, cambridge (UK), 2021).

  78. Provoost, P., Bosch, S. & appletans, W. Robis: R client to access data from the OBIS API. (Ocean biogeographic information system. Intergovernmental oceanographic commission of UNESCO, 2017).

  79. Hadfield, J. D. MCMC Methods for multi-response generalized linear mixed models: The MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).

    Google Scholar 

  80. Pinheiro, J., bates, D., Debroy, S. & Sarkar, D. Nlme: Nonlinear mixed-effects models. (2013).

  81. Selmoni, O., Cleves, P. & Exposito-Alonso, M. Scripts and data from ‘global coral genomic vulnerability explains recent reef losses’. https://doi.org/10.5281/zenodo.10838947 (2024).

    Google Scholar 

  82. NOAA national centers for environmental information. ETOPO 2022 15 arc-second global relief Model. https://doi.org/10.25921/fd45-gt74 (2022).

  83. Unep-Wcmc, WorldFish-Center, Wri & Tnc. Global distribution of warm-water coral reefs, compiled from multiple sources including the millennium coral reef mapping project. Version 4.1. http://data.unep-wcmc.org/datasets/1 (2021).

Download references

Acknowledgements

We are grateful to the openness of many researchers who make genomic data publicly available, making this research possible: Cooke et al., Drury et al., Fulle et al., Matz et al., Selmoni et al., Shinzato et al., and Torquato et al. We also thank the Catlin Seaview Survey project for collecting and giving access to the field survey data for the Acropora GBR case study, the Coral Reef Watch for giving access to the degree heating week data, the United Nations Environment Programme World Conservation Monitoring Centre for giving access to the worldwide distribution of coral reefs data, and Dixon et al. for sharing the Acropora gene expression data. We thank Rachael Bay and Stephane Joost for early discussions of coral datasets, and thank the MoiLab and Cleves lab for comments and discussions. M.E.-A. is supported by the Office of the Director of the National Institutes of Health’s Early Investigator Award (1DP5OD029506-01), the Carnegie Institution for Science, the Howard Hughes Medical Institute, and the University of California, Berkeley. Computational analyses were done on the High-Performance Computing clusters Memex, Calc, and MoiNode supported by the Carnegie Institution for Science. P.A.C. is supported by an NSF-EDGE grant (2128073), Pew Biomedical and Marine Fellowship (00036631), Revive and Restore, the Carnegie Institution for Science, and Moore Foundation grant (12187). We also thank a Carnegie Venture Grant (P.A.C. and M.E.-A.) for support.

Author information

Authors and Affiliations

Authors

Contributions

O.S., P.A.C., and M.E.-A. conceived and led the project. O.S. conducted research, O.S., P.A.C., and M.E.-A. interpreted the results and wrote the manuscript.

Corresponding authors

Correspondence to
Oliver Selmoni, Phillip A. Cleves or Moises Exposito-Alonso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Information

Supplementary Data 1

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Selmoni, O., Cleves, P.A. & Exposito-Alonso, M. Global coral genomic vulnerability explains recent reef losses.
Nat Commun (2025). https://doi.org/10.1038/s41467-025-67616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67616-5


Source: Ecology - nature.com

Satellite altimetry reveals intensifying global river water level variability

Reconstruction of 2,965 Microbial Genomes from Mangrove Sediments across Guangxi, China

Back to Top