in

Integrated assessment of greenhouse gas emissions in extensive livestock farming systems


Abstract

Extensive livestock farming has been described only in part, with previous studies focusing mainly on individual aspects such as the breeds reared, economic profitability, or environmental impact. However, the current scenario of increasing climate uncertainty highlights the need for a more comprehensive description of typologies of extensive production systems. In this study, 52 dehesa farms were analysed between 2021 and 2022 using technical, economic and environmental indicators. To determine their main characteristics, a Principal Component Analysis was conducted, followed by Cluster Analysis. Three factors were identified: (i) level of intensification and emissions, (ii) land tenure and labour and (iii) dependence on CAP subsidies. These factors explained 67.63% of total variance, and based on them, four farm types were classified. Results showed that less intensive farms had lower environmental impact (cluster 1, 2, 3: 991.99, 727.20 and 1049.87 kg CO2eq ha-1 year-1, respectively) and lower dependence on external inputs. More intensified farms (cluster 4: 2183.58 kg CO2eq ha-1 year-1), although emissions were higher, showed better economic performance. Cluster 3 represented the most sustainable model since farms combined good technical and economic performance while applying regenerative environmental management practices. This classification can support the development of tailored management strategies to guide extensive livestock systems towards improved sustainability and resilience.

Similar content being viewed by others

Models for sustainable management of livestock waste based on neural network architectures

Spatiotemporal evolution regional differences and decoupling effects of greenhouse gas emissions from animal husbandry in Henan Province

Estimating the environmental Kuznets curve for cattle production and environmental degradation in Latin America, Africa, and Southeast Asia

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. Corresponding author: [email protected].

References

  1. Steinfeld, H. et al. Livestock’s long shadow: Environmental issues and options. Renewable Resources Journal (2006).

  2. Bernués, A. et al. Exploring social preferences for ecosystem services of multifunctional agriculture across policy scenarios. Ecosyst. Serv. 39, 101002 (2019).

    Google Scholar 

  3. Pardo, G., Casas, R., del Prado, A. & Manzano, P. Carbon footprint of transhumant sheep farms: accounting for natural baseline emissions in Mediterranean systems. Int. J. Life Cycle Assess. 29, 2184–2199 (2024).

    Google Scholar 

  4. Reyes-Palomo, C. et al. Carbon sequestration offsets a large share of GHG emissions in dehesa cattle production. J. Clean. Prod. 358, 131918 (2022).

    Google Scholar 

  5. Escribano, A. J., Gaspar, P., Mesías, F. J. & Escribano, M. The role of the level of intensification, productive orientation and self-reliance in extensive beef cattle farms. Livest Sci 193, 8–19 (2016).

    Google Scholar 

  6. Gaspar, P., Mesías, F. J., Escribano, M., Rodriguez de Ledesma, A. & Pulido, F. Economic and management characterization of dehesa farms: Implications for their sustainability. Agrofor. Syst. 71(3), 151–162 (2007).

    Google Scholar 

  7. Eldesouky, A., Mesias, F. J., Elghannam, A. & Escribano, M. Can extensification compensate livestock greenhouse gas emissions? A study of the carbon footprint in Spanish agroforestry systems. J. Clean. Prod. 200, 28–38 (2018).

    Google Scholar 

  8. Reyes-Palomo, C. et al. Free-range acorn feeding results in negative carbon footprint of Iberian pig production in the dehesa agro-forestry system. J. Clean. Prod. 418, 138170 (2023).

    Google Scholar 

  9. Horrillo, A., Gaspar, P., Rodríguez-Ledesma, A. & Escribano, M. Assessment of greenhouse gas emissions and carbon sequestration in dairy goat farming systems in northern extremadura. Spain. Animals 14, 3501 (2024).

    Google Scholar 

  10. Escribano, M., Horrillo, A. & Mesías, F. J. Greenhouse gas emissions and carbon sequestration in organic dehesa livestock farms. Does technical-economic management matters? J Clean Prod 372, 133779 (2022).

  11. Escribano, M., Elghannam, A. & Mesias, F. J. Dairy sheep farms in semi-arid rangelands: A carbon footprint dilemma between intensification and land-based grazing. Land Use Policy 95, 104600 (2020).

    Google Scholar 

  12. Martin, G. et al. Potential of multi-species livestock farming to improve the sustainability of livestock farms: A review. Agric Syst 181, 102821 (2020).

    Google Scholar 

  13. Rodriguez-Estevez, V. et al. Consumption of Acorns by Finishing Iberian Pigs and Their Function in the Conservation of the Dehesa Agroecosystem. in Agroforestry for Biodiversity and Ecosystem Services – Science and Practice (InTech, 2012).

  14. Rolo, V., Rivest, D., Maillard, É. & Moreno, G. Agroforestry potential for adaptation to climate change: A soil-based perspective. Soil Use Manag 39, 1006–1032 (2023).

    Google Scholar 

  15. MAPA. Plan Estratégico de La PAC de España 2023–2027. Ministerio de Agricultura, Pesca y Alimentación. https://www.mapa.gob.es/es/pac/post-2020/pepac.aspx%0A%0A (2023).

  16. Escribano, M., Horrillo, A., Rodríguez-Ledesma, A. & Gaspar, P. Stakeholders’ perception on the role of extensive livestock farming in the fight against climate change. Renewable Agric. Food Syst. 39, e21 (2024).

    Google Scholar 

  17. Bastanchury-López, M. T., De-Pablos-Heredero, C., Martín-Romo-Romero, S. & García, A. Assessment of Key Feeding Technologies and Land Use in Dairy Sheep Farms in Spain. Land (Basel) 11, 177 (2022).

  18. Genest-Richard, P., Halde, C., Breune, I., Mundler, P. & Devillers, N. Multivariate analysis of economic performance and environmental impacts of multispecies pastured livestock farms using direct marketing. Agric Syst 225, 104276 (2025).

    Google Scholar 

  19. Gonzalez-Ronquillo, M. et al. Typification and characterization of different livestock production systems of mediterranean dairy sheep farms with different degrees of intensification: A comparative study. Animals 15, 448 (2025).

    Google Scholar 

  20. Ayala, M. C. et al. Characterizing beef and sheep farming systems to customize sustainability interventions and policy implementation. J. Environ. Manage. 366, 121900 (2024).

    Google Scholar 

  21. Bousbia, A. et al. Typology analysis of cattle farms in Northeast Algeria: Potential for sustainable development. Agric. Syst. 218, 103995 (2024).

    Google Scholar 

  22. Huber, R. et al. Farm typologies for understanding farm systems and improving agricultural policy. Agric. Syst. 213, 103800 (2024).

    Google Scholar 

  23. Fariña, S. et al. Milk production systems in Latin America and the Caribbean: Biophysical, socio-economic, and environmental performance. Agric. Syst. 218, 103987 (2024).

    Google Scholar 

  24. Morales-Jerrett, E., Mena, Y., Camúñez-Ruiz, J. A., Fernández, J. & Mancilla-Leytón, J. M. Characterization of dairy goat production systems using autochthonous breeds in Andalusia (Southern Spain): Classification and efficiency comparative analysis. Small Rumin. Res. 213, 106743 (2022).

    Google Scholar 

  25. Upadhaya, S., Arbuckle, J. G. & Schulte, L. A. Developing farmer typologies to inform conservation outreach in agricultural landscapes. Land Use Policy 101, 105157 (2021).

    Google Scholar 

  26. González-Quintero, R. et al. Environmental impact of primary beef production chain in Colombia: Carbon footprint, non-renewable energy and land use using Life Cycle Assessment. Sci. Total Environ. 773, 145573 (2021).

    Google Scholar 

  27. Ruiz, F. A., Vázquez, M., Camuñez, J. A., Castel, J. M. & Mena, Y. Characterization and challenges of livestock farming in Mediterranean protected mountain areas (Sierra Nevada, Spain). Span. J. Agric. Res. 18, e0601 (2020).

    Google Scholar 

  28. Musafiri, C. M. et al. Farming systems’ typologies analysis to inform agricultural greenhouse gas emissions potential from smallholder rain-fed farms in Kenya. Sci Afr 8, e00458 (2020).

    Google Scholar 

  29. Gourdouvelis, D., Dotas, V., Kaimakamis, I., Zagorakis, K. & Yiakoulaki, M. Typology and structural characterisation of suckler cow farming system in Central Macedonia. Greece. Ital J Anim Sci 18, 1082–1092 (2019).

    Google Scholar 

  30. Foguesatto, C. R., Borges, J. A. R. & Machado, J. A. D. Farmers’ typologies regarding environmental values and climate change: Evidence from southern Brazil. J. Clean Prod. 232, 400–407 (2019).

    Google Scholar 

  31. Díaz-Gaona, C., Sánchez-Rodríguez, M., Rucabado-Palomar, T. & Rodríguez-Estévez, V. A typological characterization of organic livestock farms in the natural park sierra de grazalema based on technical and economic variables. Sustainability 11, 6002 (2019).

    Google Scholar 

  32. Makate, C., Makate, M. & Mango, N. Farm types and adoption of proven innovative practices in smallholder bean farming in Angonia district of Mozambique. Int J Soc Econ 45, 140–157 (2018).

    Google Scholar 

  33. Kamau, J. W., Stellmacher, T., Biber-Freudenberger, L. & Borgemeister, C. Organic and conventional agriculture in Kenya: A typology of smallholder farms in Kajiado and Murang’a counties. J. Rural Stud. 57, 171–185 (2018).

    Google Scholar 

  34. Gelasakis, A. I. et al. Typology and characteristics of dairy goat production systems in Greece. Livest Sci. 197, 22–29 (2017).

    Google Scholar 

  35. Mena, Y., Ruiz-Mirazo, J., Ruiz, F. A. & Castel, J. M. Characterization and typification of small ruminant farms providing fuelbreak grazing services for wildfire prevention in Andalusia (Spain). Sci. Total Environ. 544, 211–219 (2016).

    Google Scholar 

  36. Kuivanen, K. S. et al. Characterising the diversity of smallholder farming systems and their constraints and opportunities for innovation: A case study from the Northern Region, Ghana. NJAS: Wageningen Journal of Life Sciences 78, 153–166 (2016).

  37. Goswami, R., Chatterjee, S. & Prasad, B. Farm types and their economic characterization in complex agro-ecosystems for informed extension intervention: study from coastal West Bengal. India. Agric. Food Econ. 2, 5 (2014).

    Google Scholar 

  38. Franco, J. A., Gaspar, P. & Mesias, F. J. Economic analysis of scenarios for the sustainability of extensive livestock farming in Spain under the CAP. Ecol. Econ. 74, 120–129 (2012).

    Google Scholar 

  39. Díaz-Gaona, C., Sánchez-Rodríguez, M. & Rodríguez-Estévez, V. Assessment of the sustainability of extensive livestock farms on the common grasslands of the natural park sierra de grazalema. Sustain. (Switzerland) 13, 1–19 (2021).

    Google Scholar 

  40. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 1979(360), 987–992 (2018).

    Google Scholar 

  41. Horrillo, A., Gaspar, P. & Escribano, M. Organic farming as a strategy to reduce carbon footprint in dehesa agroecosystems: A case study comparing different livestock products. Animals 10, 162 (2020).

    Google Scholar 

  42. Buratti, C. et al. Carbon footprint of conventional and organic beef production systems: An Italian case study. Sci. Total Environ. 576, 129–137 (2017).

    Google Scholar 

  43. Röös, E., Sundberg, C., Tidåker, P., Strid, I. & Hansson, P.-A. Can carbon footprint serve as an indicator of the environmental impact of meat production?. Ecol Indic 24, 573–581 (2013).

    Google Scholar 

  44. MITECO. Cuarto Inventario Forestal Nacional EXTREMADURA. https://cpage.mpr.gob.es (2020).

  45. Gaspar, P., Escribano, M., Mesías, F. J., De Ledesma, A. R. & Pulido, F. Sheep farms in the Spanish rangelands (dehesas): Typologies according to livestock management and economic indicators. Small Ruminant Res. 74(1–3), 52–63 (2008).

    Google Scholar 

  46. Carricondo, A., Peiteado, C. & Bécares, J. ¿Quien contamina cobra?: Relación entre la Política Agraria Común y el medio ambiente en España. 1–8 (2010).

  47. Olea, L. & San Miguel-Ayanz, A. The Spanish dehesa. A traditional Mediterranean silvopastoral system linking production and nature conservation. in Sustainable grassland productivity: Proceedings of the 21st General Meeting of the European Grassland Federation. Badajoz (Spain) April 2006 3–13 (Badajoz (Spain), 2006).

  48. Escribano, M., Rodríguez de Ledesma, A., Mesías, F. J. & Pulido, F. Tipología de sistemas adehesados. Archivos de Zootecnia 50, 411–414 (2001).

  49. Escribano, M., Rodríguez de Ledesma, A., Mesías, F. J. & Pulido, F. Niveles de cargas ganaderas en la dehesa extremeña. Archivos de zootecnia 51, 315–326 (2002).

  50. Martín, M., Escribano, M., Rodríguez de Ledesma, A., Pulido, F. & Mesías, F. J. Sistemas extensivos de producción animal. Archivos de zootecnia 50 (191), 465–489 (2001).

  51. European Communities. Manual on the Economic Accounts for Agriculture and Forestry EAA/EAF. Office for Official Plublications of the European Communities http://europa.eu.int (2000).

  52. ISO. International Standard 14044:2006. in Environmental management – Life cycle assessement – Requirements and guidelines, ISO 14044, International Organization for Standardization (Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr., Geneva, Switzerland, 2006).

  53. ISO. International Standard 14040:2006. in Environmental management – Life cycle assessement – Requirements and guidelines, ISO 14040, International Organization for Standardization (Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr., Geneva, Switzerland, 2006).

  54. IPCC. Refinement to the 2006 IPCC Guidlines for National Greenhouse Gas Inventories, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (Eds). Published: IPCC, Switzerlan. (2019).

  55. MITECO. Informe de Inventario Nacional de Emisiones de Gases de Efecto Invernadero. vol. 2024 https://cpage.mpr.gob.es/ (2024).

  56. IPCC. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Inter- Governmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (Eds)], Cambridge University Press, Cambridge, U. (2007).

  57. Gavrilova, O. et al. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 10: Emissions form Livestock and Manure Management. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories vol. 4 209 (2019).

  58. MAPA. Porcino Ibérico. Bases Zootécnicas Para El Cálculo Del Balance Alimentario de Nitrógeno y de Fósforo. Ministerio de Agricultura, Pesca y Alimentación https://cpage.mpr.gob.es/producto/porcino-blanco/ (2020).

  59. MAPA. Bovino. Bases Zootécnicas Para El Cálculo Del Balance Alimentario de Nitrógeno y de Fósforo. Ministerio de Agricultura, Pesca y Alimentación https://www.mapa.gob.es/es/ganaderia/temas/ganaderia-y-medio-ambiente/baseszootecnicascalculonitrogenoyfosforomarzo2020_tcm30-440945.pdf (2019).

  60. MAPA. Ovino. Bases Zootécnicas Para El Cálculo Del Balance Alimentario de Nitrógeno y de Fósforo. Ministerio de Agricultura, Pesca y Alimentación. https://www.mapa.gob.es/es/ganaderia/temas/ganaderia-y-medioambiente/baseszootecnicascalculonitrogenoyfosforomarzo2020_tcm30-440945.pdf (2019).

  61. Hergoualc’h, K. et al. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 1–54 (2019).

  62. Petersen, B. M., Knudsen, M. T., Hermansen, J. E. & Halberg, N. An approach to include soil carbon changes in life cycle assessments. J Clean Prod 52, 217–224 (2013).

    Google Scholar 

  63. Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis. (Pearson Education Limited, Harlow, 2014).

  64. Gaspar, P., Escribano, A. J., Mesías, F. J., Escribano, M. & Pulido, A. F. Goat systems of Villuercas-Ibores area in SW Spain: Problems and perspectives of traditional farming systems. Small Rumin. Res. 97, 1–11 (2011).

    Google Scholar 

  65. Mądry, W. et al. An overview of farming system typology methodologies and its use in the study of pasture-based farming system: a review. Span. J. Agric. Res. 11, 316 (2013).

    Google Scholar 

  66. Riveiro, J. A., Mantecón, A. R., Álvarez, C. J. & Lavín, P. A typological characterization of dairy Assaf breed sheep farms at NW of Spain based on structural factor. Agric. Syst. 120, 27–37 (2013).

    Google Scholar 

  67. Frascarelli, A. et al. Comparative techno-economic and carbon footprint analysis of semi-extensive and intensive beef farming. Agriculture 15, 472 (2025).

    Google Scholar 

  68. Tinitana-Bayas, R., Sanjuán, N., Jiménez, E. S., Lainez, M. & Estellés, F. Assessing the environmental impacts of beef production chains integrating grazing and landless systems. animal 18, 101059 (2024).

  69. Hammar, T., Hansson, P.-A. & Röös, E. Time-dependent climate impact of beef production – can carbon sequestration in soil offset enteric methane emissions?. J. Clean. Prod. 331, 129948 (2022).

    Google Scholar 

  70. Lunesu, M. F. et al. Applying an indirect method to assess the net carbon footprint of dairy sheep farms with a special focus on suckling lamb. Ital. J. Anim. Sci. 24, 689–710 (2025).

    Google Scholar 

  71. Knudsen, M. T. et al. The importance of including soil carbon changes, ecotoxicity and biodiversity impacts in environmental life cycle assessments of organic and conventional milk in Western Europe. J. Clean. Prod. 215, 433–443 (2019).

    Google Scholar 

  72. Alemu, A. W. et al. Assessment of grazing management on farm greenhouse gas intensity of beef production systems in the Canadian Prairies using life cycle assessment. Agric Syst 158, 1–13 (2017).

    Google Scholar 

  73. Terres, J.-M. et al. Farmland abandonment in Europe: Identification of drivers and indicators, and development of a composite indicator of risk. Land Use Policy 49, 20–34 (2015).

    Google Scholar 

  74. Eurostat. Farm structure survey – farmers by age and characteristics. Eurostat Statistics Explained (2023).

  75. Daniele, B.-C. The farm succession effect on farmers’ management choices. Land Use Policy 137, 107014 (2024).

    Google Scholar 

  76. Obame, R. G. M. et al. On-farm carbon capturing strategies to reduce carbon footprint. in Agriculture Toward Net Zero Emissions 99–124 (Elsevier, 2025).

  77. Paustian, K., Larson, E., Kent, J., Marx, E. & Swan, A. Soil C Sequestration as a Biological Negative Emission Strategy. Front. Climate 1, 1–11 (2019).

    Google Scholar 

  78. MAPA. Ovino. Bases Zootécnicas Para El Cálculo Del Balance Alimentario de Nitrógeno y de Fósforo. Ministerio de Agricultura, Pesca y Alimentación https://www.mapa.gob.es/es/ganaderia/temas/ganaderia-y-medio-ambiente/baseszootecnicascalculonitrogenoyfosforomarzo2020_tcm30-440945.pdf (2019).

  79. Soussana, J. F., Tallec, T. & Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4, 334–350 (2010).

    Google Scholar 

  80. Kiran, K. K., Pal, S., Chand, P. & Kandpal, A. Carbon sequestration potential of sustainable agricultural practices to mitigate climate change in Indian agriculture: A meta-analysis. Sustain. Prod. Consum. 35, 697–708 (2023).

    Google Scholar 

  81. Mcdonald, H. et al. Carbon farming Making agriculture fit for 2030 Policy Department for Economic, Scientific and Quality of Life Policies Directorate-General for Internal Policies. European Parliament 67 (2021).

  82. Benitez-Altuna, F., Trienekens, J. & Gaitán-Cremaschi, D. Categorizing the sustainability of vegetable production in Chile: a farming typology approach. Int. J. Agric. Sustain. 21, (2023).

  83. Bartkowski, B., Schüßler, C. & Müller, B. Typologies of European farmers: approaches, methods and research gaps. Reg. Environ. Change. 22, 43 (2022).

    Google Scholar 

  84. Graskemper, V., Yu, X. & Feil, J.-H. Farmer typology and implications for policy design – An unsupervised machine learning approach. Land Use Policy 103, 105328 (2021).

    Google Scholar 

  85. Stetter, C., Mennig, P. & Sauer, J. Using machine learning to identify heterogeneous impacts of agri-environment schemes in the EU: A case study. Eur. Rev. Agric. Econ. 49, 723–759 (2022).

    Google Scholar 

Download references

Acknowledgments

This paper has been jointly funded (85%) by the European Union, European Regional Development Fund and the Regional Government of Extremadura. Managing Authority: Ministry of Finance. Grant Ref. GR24147.

Funding

The funding was provided by the Junta de Extremadura and FEDER Funds (Grant GR24147).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.H., M.E., P.G. and A.R.L.; methodology, A.H. and M.E.; formal analysis, A.H. and M.E.; investigation, A.H., M.E., P.G. and A.R.L.; data curation, A.H. and M.E.; writing—original draft preparation, A.H., A.R.L. and M.E.; writing—review and editing, A.H., M.E., P.G. and A.R.L.; visualization, A.H. and M.E.; supervision, M.E. and P.G.; project administration, M.E. and P.G.; funding acquisition, M.E., A.R.L. and P.G. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to
Andrés Horrillo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Horrillo, A., Gaspar, P., Rodríguez-Ledesma, A. et al. Integrated assessment of greenhouse gas emissions in extensive livestock farming systems.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-32814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-32814-0

Keywords

  • Extensive farms
  • Dehesa
  • Climate change
  • Cluster
  • Carbon footprint
  • Regenerative management practices


Source: Ecology - nature.com

Efficient and scalable training set generation for automated pollen monitoring with Hirst-type samplers

Deep-sea gas hydrate mounds and chemosynthetic fauna discovered at 3640 m on the Molloy Ridge, Greenland Sea

Back to Top