in

Palaeometabolomes yield biological and ecological profiles at early human sites


Abstract

The science of metabolic profiling exploits chemical compound byproducts of metabolism called metabolites1 that explain internal biological functions, physiological health and disease, and provide evidence of external influences specific to an organism’s habitat. Here we assess palaeometabolomes from fossilized mammalian hard tissues as a molecular ecological strategy to provide evidence of an ancient organism’s relationship with its environment. From eastern, central and southern African Plio-Pleistocene localities of palaeoanthropological significance, we study six fossils from Olduvai Gorge, Tanzania, one from the Chiwondo Beds, Malawi, and one from Makapansgat, South Africa. We perform endogeneity assessments by analysing palaeometabolomes of palaeosols and the effects of owl digestion on rodent bones to enable prudent ecological inferences. Diagenesis is indicated by metabolites of collagenase-producing bacteria2, whereas the preservation of peptides including those of collagen are identified by proteomics. Endogenous metabolites document biological functions and exogenous metabolites render environmental details including soil characteristics and woody cover, and enable annual minimum and maximum rainfall and temperature reconstructions at Olduvai Gorge, supporting the freshwater woodland and grasslands of Olduvai Gorge Bed I3,4,5, and the dry woodlands and marsh of Olduvai Gorge Upper Bed II6. All sites denote wetter and/or warmer conditions than today. We infer that metabolites preserved in hard tissues derive from an extravasated vasculature serum filtrate that becomes entombed within developing mineralized matrices, and most probably survive palaeontological timeframes in the nanoscopic ‘pool’ of structural-bound water that occurs in hard tissue niches7.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative images of fossil specimens.
Fig. 2: PLS-DA of the top 100 most variable metabolites.
Fig. 3: Bone ultrastructure and metabolite niches.
Fig. 4: Average metabolite molecular masses of extant and fossil hard tissues.

Similar content being viewed by others

Earliest Olduvai hominins exploited unstable environments ~ 2 million years ago

Life-history of Palaeoloxodon antiquus reveals Middle Pleistocene glacial refugium in the Megalopolis basin, Greece

Buried, not erased: palynofloras in ultra-high-pressure metamorphic rocks

Data availability

The raw mass spectrometry metabolomics data generated during this study are available at MassIVE (UCSD) (https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp) under the deposition number MSV000097146. Proteomics LC–MS data (proteomics raw mass spectrometry data, peak lists and results) that support the findings of this study are deposited to the ProteomeXchange Consortium via the MassIVE partner repository and can be retrieved with the accession code MSV000097173 and with the dataset identifier PXD061016.

References

  1. Zhang, A., Sun, H., Wang, P., Han, Y. & Wang, X. Recent and potential developments of biofluid analyses in metabolomics. J. Proteomics 75, 1079–1088 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  2. Endo, A., Murakawa, S. & Shimizu, H. Purification and properties of collagenase from a Streptomyces species. J. Biochem. 102, 161–170 (1987).

    Article 

    Google Scholar 

  3. Ashley, G. M. et al. Paleoenvironmental and paleoecological reconstruction of a freshwater oasis in savannah grassland at FLK North, Olduvai Gorge, Tanzania. Quat. Res. 74, 333–343 (2010).

    Article 
    CAS 

    Google Scholar 

  4. Barboni, D. et al. Phytoliths infer locally dense and heterogeneous paleovegetation at FLK North and surrounding localities during upper Bed I time, Olduvai Gorge, Tanzania. Quat. Res. 74, 344–354 (2010).

    Article 

    Google Scholar 

  5. Fernández-Jalvo, Y. et al. Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania). J. Hum. Evol. 34, 137–172 (1998).

    Article 
    PubMed 

    Google Scholar 

  6. Kovarovic, K., Slepkov, R. & McNulty, K. P. Ecological continuity between Lower and Upper Bed II, Olduvai Gorge, Tanzania. J. Hum. Evol. 64, 538–555 (2013).

    Article 
    PubMed 

    Google Scholar 

  7. Euw, S. V et al. Organization of bone mineral: the role of mineral–water interactions. Geosciences 8, 466 (2018).

    Article 
    ADS 

    Google Scholar 

  8. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  9. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  10. West, G. B., Woodruff, W. H. & Brown, J. H. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl Acad. Sci. USA 99, 2473–2478 (2002).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  11. Padian, K. & Ricqlès, A. D. Inferring the physiological regimes of extinct vertebrates: methods, limits and framework. Phil. Trans. R. Soc. B 375, 20190147 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  12. Köhler, M., Marín-Moratalla, N., Jordana, X. & Aanes, R. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487, 358–361 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  13. Lüdecke, T. et al. Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Karonga Basin, East African Rift System). J. Hum. Evol. 90, 163–175 (2016).

    Article 
    PubMed 

    Google Scholar 

  14. Schrenk, F., Bromage, T. G., Sandrock, O. & Gorthner, A. Paleoecology of the Malawi Rift: Vertebrate and invertebrate faunal contexts of the Chiwondo Beds, northern Malawi. J. Hum. Evol. 28, 59–70 (1995).

    Article 

    Google Scholar 

  15. Huber, B., Larsen, T., Spengler, R. N. & Boivin, N. How to use modern science to reconstruct ancient scents. Nat. Hum. Behav. 6, 611–614 (2020).

    Article 

    Google Scholar 

  16. Badillo-Sanchez, D., Davies-Barrett, A. M., Ruber, M. S., Jones, D. J. L. & Inskip, S. A. Archaeometabolomics characterizes phenotypic differences in human cortical bone at a molecular level relating to tobacco use. Sci. Adv. 10, eadn9317 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  17. Enlow, D. H. Principles of Bone Remodeling (Charles C. Thomas, 1963).

  18. Albuquerque, U. P., Ramos, M. A. & Melo, J. G. New strategies for drug discovery in tropical forests based on ethnobotanical and chemical ecological studies. J. Ethnopharmacol. 140, 197–201 (2012).

    Article 
    PubMed 

    Google Scholar 

  19. Balunas, M. J. & Kinghorn, A. D. Drug discovery from medicinal plants. Life Sci. 78, 431–441 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  20. Sumner, L. W., Mendes, P. & Dixon, R. A. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817–836 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  21. Wiemann, J. A Fundamental Exploration of the Interactions Between Minerals and Life’s Building Blocks in Deep Time. PhD thesis, Yale Univ. (2021).

  22. Colleary, C., Lamadrid, H. M, O’Reilly, S. S, Dolocan, A. & Nesbitt, S. J Molecular preservation in mammoth bone and variation based on burial environment. Sci. Rep. 11, 2662 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  23. Schweitzer, M. H. et al. Heme compounds in dinosaur trabecular bone. Proc. Natl Acad. Sci. USA 94, 6291–6296 (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  24. Wiemann, J. et al. Dinosaur origin of egg color: oviraptors laid blue-green eggs. PeerJ 5, e3706 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  25. Boatman, E. M. Mechanisms of soft tissue and protein preservation in Tyrannosaurus rex. Sci. Rep. 9, 15678 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  26. Bertazzo, S. et al. Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens. Nat. Commun. 6, 7352 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  27. Yang, J., Kojasoy, V., Porter, G. J. & Raines, R. T. Pauli exclusion by n→π* interactions: implications for paleobiology. ACS Cent. Sci. 10, 1829–1834 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  28. Wiemann, J. et al. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat. Commun. 9, 4741 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  29. Filipowska, J., Tomaszewski, K. A., Niedźwiedzki, Ł, Walocha, J. A. & Niedźwiedzki, T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 20, 291–302 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  30. Godwin, L., Tariq, M. A. & Crane, J. S. in StatPearls (StatPearls Publishing, 2022).

  31. Wongdee, K. et al. Osteoblasts express claudins and tight junction-associated proteins. Histochem. Cell Biol. 130, 79–90 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  32. Weinger, J. M. & Holtrop, M. E. An ultrastructural study of bone cells: The occurrence of microtubules, microfilaments and tight junctions. Calcif. Tissue Res. 14, 15–29 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  33. Prêle, C. M., Horton, M. A., Caterina, P. & Stenbeck, G. Identification of the molecular mechanisms contributing to polarized trafficking in osteoblasts. Exp. Cell. Res. 282, 24–34 (2003).

    Article 
    PubMed 

    Google Scholar 

  34. Saitta, E. T. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. eLife 8, e46205 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  35. Brettell, R. C. et al. ‘Choicest unguents’: molecular evidence for the use of resinous plant exudates in late Roman mortuary rites in Britain. J. Archaeolog. Sci. 53, 639–648 (2015).

    Article 
    CAS 

    Google Scholar 

  36. Zimmermann, M. et al. Metabolomics-based analysis of miniature flask contents identifies tobacco mixture use among the ancient Maya. Sci. Rep. 11, 1590 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  37. Li, Z. et al. Single-cell mass spectrometry analysis of metabolites facilitated by cell electro-migration and electroporation. Anal. Chem. 92, 10138–10144 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  38. Bromage, T. G., Goldman, H. M., McFarlin, S. C., Perez-Ochoa, A. & Boyde, A. Confocal scanning optical microscopy of a 3-million-year-old Australopithecus afarensis femur. Scanning Microsc. 31, 1–10 (2009).

    Article 
    CAS 

    Google Scholar 

  39. Welhaven, H. D. et al. The cortical bone metabolome of C57BL/6J mice is sexually dimorphic. J. Bone Miner. Res. 6, e10654 (2022).

    CAS 

    Google Scholar 

  40. Denys, C., Reed, D. N. & Dauphin, Y. Deciphering alterations of rodent bones through in vitro digestion: an avenue to understand pre-diagenetic agents? Minerals 13, 124 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  41. Fernandez-Jalvo, Y., Andrews, P., Sevilla, P. & Requejo, V. Digestion versus abrasion features in rodent bones. Lethaia 47, 323–336 (2014).

    Article 

    Google Scholar 

  42. Feye, K. M., Baxter, M. F. A., Tellez-Isaias, G., Kogut, M. H. & Ricke, S. C. Influential factors on the composition of the conventionally raised broiler gastrointestinal microbiomes. Poultry Sci. 99, 653–659 (2020).

    Article 
    CAS 

    Google Scholar 

  43. Ashley, G. M. et al. A spring and wooded habitat at FLK Zinj and their relevance to origins of human behavior. Quat. Res. 74, 304–314 (2010).

    Article 
    CAS 

    Google Scholar 

  44. Elsas, J. D. V., Semenov, A. V., Costa, R. & Trevors, J. T. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 5, 173–183 (2011).

    Article 
    PubMed 

    Google Scholar 

  45. Valdezate, S. in Encyclopedia of Infection and Immunity Vol. 1 (ed. Rezaei, N.) 589–613 (Elsevier, 2022).

  46. Loria, R., Bukhalid, R. A., Fry, B. A. & King, R. R. Plant pathogenicity in the genus Streptomyces. Plant Dis. 81, 836–846 (1997).

    Article 
    PubMed 

    Google Scholar 

  47. Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  48. Velásquez, A. C., Castroverde, C. D. M. & He, S. Y. Plant and pathogen warfare under changing climate conditions. Curr. Biol. 28, R619–R634 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  49. Money, N. P. in The Fungi (eds Watkinson, S. C., Boddy, L. & Money, N. P.) 1–36 (Academic Press, 2016).

  50. Fern, K. Asparagus africanus. Tropical Plants Database tropical.theferns.info/viewtropical.php?id=Asparagus+africanus (2025).

  51. Newton, L. E. in Aloes: The Genus Aloe Medicinal and Aromatic Plants—Industrail Profiles (ed. Reynolds, T.) 1–16 (CRC Press, 2004).

  52. Harris, D. J. & Wortley, A. H. Monograph of Aframomium (Zingiberaceae), Vol. 104, 1–204 (American Society of Plant Taxonomists, 2018).

  53. Fern, K. Piper capense. Tropical Plants Database tropical.theferns.info/viewtropical.php?id=Piper+capense (2025).

  54. Fern, K. Kigelia africana. Tropical Plants Database tropical.theferns.info/viewtropical.php?id=Kigelia+africana (2025).

  55. Labrecht, F. L. Aspects of evolution and ecology of tsetse flies and trypanosomiasis in prehistoric African environments. J. Afr. Hist. 5, 1–24 (1964).

    Article 

    Google Scholar 

  56. Pollock, J. N. (ed.) Training Manual for Tsetse Control Personnel, Vol. 2. Ecology and Behaviour of Tsetse (Food and Agriculture Organization of the United Nations, 1982).

  57. Kasozi, K. I. et al. Epidemiology of Trypanosomiasis in wildlife—implications for humans at the wildlife interface in Africa. Front. Vet. Sci. https://doi.org/10.3389/fvets.2021.621699 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  58. Souron, A. in Ecology, Conservation and Management of Wild Pigs and Peccaries (eds Melletti, M. & Meijaard, E.) 29–38 (Cambridge Univ. Press, 2017).

  59. Sandrock, O., Kullmer, O., Schrenk, F., Juwayeyi, Y. M. & Bromage, T. G. in Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence (eds Bobe, R. Alemseged, Z. & Behrensmeyer, A. K.) 315–332 (Springer, 2007).

  60. Reed, K. E. et al. in African Paleoecology and Human Evolution (eds Reynolds, S. C. & Bobe, R.) 66–81 (Cambridge Univ. Press, 2022).

  61. Boyde, A. & Jones, S. J. Aspects of anatomy and development of bone: the nm, μm and mm hierarchy. Adv. Organ Biol. 5, 3–44 (1998).

    Article 

    Google Scholar 

  62. Buss, D. J., Kröger, R., McKee, M. D. & Reznikov, N. Hierarchical organization of bone in three dimensions: a twist of twists. J. Struct. Biol. X. 30 6, 100057 (2022).

    CAS 
    PubMed 

    Google Scholar 

  63. Grandfield, K., Vuong, V. & Schwarcz, H. P. Ultrastructure of bone: hierarchical features from nanometer to micrometer scale revealed in focused ion beam sections in the tem. Calcif. Tissue Int. 103, 606–616 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  64. Bell, L. C. & Mika, H. The pH dependence of the surface concentrations of calcium and phosphorus on hydroxyapatite in aqueous solutions. J. Soil Sci. 30, 247–258 (1979).

    Article 
    CAS 

    Google Scholar 

  65. Bell, L. C., Posner, A. M. & Quirk, J. P. Surface charge characteristics of hydroxyapatite and fluorapatite. Nature 239, 515–517 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar 

  66. Itoh, D., Yoshimoto, N. & Yamamoto, S. Retention mechanism of proteins in hydroxyapatite chromatography – multimodal interaction based protein separations: a model study. Curr. Protein Pept. Sci. 20, 75–81 (2018).

    Article 
    PubMed Central 

    Google Scholar 

  67. Kendall, C., Eriksen, A. M. H., Kontopoulos, I., Collins, M. J. & Turner-Walker, G. Diagenesis of archaeological bone and tooth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 491, 21–37 (2018).

    Article 

    Google Scholar 

  68. Buffrénil, V. D. Vertebrate Skeletal Histology and Paleohistology (CRC Press, 2021).

  69. Jans, M. M. E. in Current Developments in Bioerosion (eds Wisshak, M. & Tapanila, L.) 397–413 (Springer, 2008).

  70. Jackes, M., Sherburne, R., Lubell, D., Barker, C. & Wayman, M. Destruction of microstructure in archaeological bone: a case study from Portugal. Int. J. Osteoarchaeol. 11, 415–432 (2001).

    Article 

    Google Scholar 

  71. Turner–Walker, G. & Syversen, U. Quantifying histological changes in archaeological bones using BSE–SEM image analysis. Archaeometry 44, 461–468 (2002).

    Article 
    ADS 

    Google Scholar 

  72. Buss, D. J., Reznikov, N. & McKee, M. D. Crossfibrillar mineral tessellation in normal and Hyp mouse bone as revealed by 3D FIB-SEM microscopy. J. Struct. Biol. 212, 107603 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  73. McKee, M. D., Buss, D. J. & Reznikov, N. Mineral tessellation in bone and the stenciling principle for extracellular matrix mineralization. J. Struct. Biol. 214, 107823 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  74. Reznikov, N. et al. Biological stenciling of mineralization in the skeleton: local enzymatic removal of inhibitors in the extracellular matrix. Bone 138, 115447 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  75. Reznikov, N., Bilton, M., Lari, L., Stevens, M. M. & Kroeger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360, eaao2189 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  76. Bertassoni, L. E. & Swain, M. V. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J. Mech. Behav. Biomed. Mater. 38, 91–104 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  77. Scott, J. E. Proteoglycan-fibrillar collagen interaction. Biochem. J 252, 313–323 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  78. Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy asmineralized fibrils separate during bone fracture. Nat. Mater. 4, 612–615 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  79. Walsh, W. R. & Guzelsu, N. Ion concentration effects on bone streaming potentials and zeta potentials. Biomaterials 14, 331–336 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  80. Wang, Y. et al. Water-mediated structuring of bone apatite. Nat. Mater. 12, 1144–1153 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  81. Duer, M. J. The contribution of solid-state NMR spectroscopy to understanding biomineralization: atomic and molecular structure of bone. J. Magn. Reson. 253, 98–110 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  82. Fullerton, G. D. & Amurao, M. R. Evidence that collagen and tendon have monolayer water coverage in the native state. Cell Biol. Int. 30, 56–65 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  83. Stigter, D. Evaluation of the counterion condensation theory of polyelectrolytes. Biophys. J. 69, 380–388 (1995).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  84. Israelachvili, J. N. Intermolecular and Surface Forces, 3rd edn (Academic Press, 2015).

  85. Urbic, T. Ions increase strength of hydrogen bond in water. Chem. Phys. Lett. 610–611, 159–162 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  86. Jiang, W., Griffanti, G., Tamimi, F., McKee, M. D. & Nazhat, S. N. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels. J. Struct. Biol. 212, 107592 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  87. Li, Y. et al. Metabolic acids impact bone mineral maturation. Preprint at bioRxiv https://doi.org/10.1101/2022.09.21.508894 (2022).

  88. Hu, Y.-Y., Rawal, A. & Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl Acad. Sci. USA 107, 22425–22429 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  89. Abbasi-Rad, S. & Rad, H. S. Quantification of human cortical bone bound and free water in vivo with ultrashort echo tiome MR imaging: a model-based aproach. Radiology 283, 862–872 (2017).

    Article 
    PubMed 

    Google Scholar 

  90. Leakey, L. S. B. Olduvai Gorge 1951–61: Volume 1, A Preliminary Report on the Geology and Fauna (Cambridge Univ. Press, 1965).

  91. Bromage, T. G. et al. Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat. Rec. 274B, 157–168 (2003).

    Article 

    Google Scholar 

  92. Pang, S. et al. Comparison of different protocols for demineralization of cortical bone. Sci. Rep. 11, 7012 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  93. Deng, J., Zhang, G. & Neubert, T. A. Metabolomic analysis of glioma cells using nanoflow liquid chromatography–tandem mass spectrometry. Methods Mol. Biol. 1741, 125–134 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  94. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  95. Xu, Y. et al. Cardiolipin remodeling enables protein crowding in the inner mitochondrial membrane. EMBO J. 40, e108428 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  96. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  97. Sinitcyn, P. et al. MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat. Biotechnol. 39, 1563–1573 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  98. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  99. Waskom, M. L. Seaborn: statistical data visualization. J. Open Source Softw. https://doi.org/10.21105/joss.03021 (2021).

  100. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by The Leakey Foundation (grant number Spring202310420) to T.G.B. We thank all institutions, which provided and supported sampling: the CMCK Karonga, Malawi, NMHN Paris, France, and the Senckenberg Research Institute and the Natural History Museum Frankfurt, Germany. We express our gratitude to the Werner Reimers Foundation in Bad Homburg, Germany, which provides the Gustav Heinrich Ralph von Koenigswald collection as a permanent loan for scientific research to the Senckenberg Research Institute and Natural History Museum Frankfurt. Thanks go to the New York University Grossman School of Medicine’s Applied Bioinformatics Laboratories for access to QIAGEN IPA. The Zeiss Gemini 300 FE-SEM used for evaluating bone microanatomy was provided courtesy of the National Institutes of Health S10 Shared Instrumentation Program, grant number 1S10OD026989-01; mass spectrometry instrumentation, National Institutes of Health grant numbers S10 OD023659 and S10 RR027990. We thank P. Ausili and L. Kaleel for assistance with metabolite annotations and data organization. N.R. and M.D.M. are members of the Fonds de Recherche du Québec–Santé (FRQS) Centre for Structural Biology Research at McGill University, and the FRQS Network for Intersectorial Research in Sustainable Oral and Bone Health. M.D.M. is the Canada Research Chair in Biomineralisation, and N.R. is a William Dawson Scholar at McGill University. A.S. is supported by the French government in the framework of the University of Bordeaux’s IdEx ‘Investments for the Future’ programme/GPR ‘Human Past’. This project is an outcome of the 2010 Max Planck Research Award to T.G.B., endowed by the German Federal Ministry of Education and Research to the Max Planck Society and the Alexander von Humboldt Foundation in respect of the Hard Tissue Research Program in Human Paleobiomics.

Author information

Authors and Affiliations

Authors

Contributions

T.G.B. conceived the study and led the work. C.D., J.K., O.K., F.S. and O.S. prepared and provided fossil samples and extant representatives of African species. G.M.A. and C.D. provided palaeosols. S.Y. and S.B.P. prepared and provided the extant laboratory mouse material, A.S. provided likelihoods of plant resources based on isotopic evidence. B.H. undertook the histology and light and electron microscopy. S.R. produced the fossil bone extracts. T.A.N., C.L.D.J. and H.E.-B. performed the metabolomics and proteomics and their relevant bioinformatics. M.D.M., N.R., D.J.B. and E.I. elaborated the interpretation of the bone ultrastructural metabolite niches. T.G.B. and S.R. annotated the metabolite lists from online databases, and T.G.B. interpreted the metabolic and ecological profiles and wrote the manuscript, with valuable contributions from all co-authors.

Corresponding author

Correspondence to
Timothy G. Bromage.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Yolanda Fernández-Jalvo, Jasmina Wiemann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Polarised light images of specimen M-D. Mus sp. or Dendromus sp., Bed I, Level FLKN1 M3.

a. Birefringent brightness at top and bottom is attributed to heavily crystalised bone domains, while the central curvilinear arc of brightness is attributed to collagen. FW = 1.547 mm; b) Detail of bright bone lamellae and osteocyte lacunae interspersed among them. FW = 0.324 mm.

Extended Data Fig. 2 Polarised light image of specimen Sm. Saccostomus cf. mearnsi, Bed I, Level FLKN1.

a. Birefringent brightness is attributed to collagen. FW = 1.343 mm; b) Detail of bright domains and osteocyte lacunae interspersed among them. FW = 0.324 mm.

Extended Data Fig. 3 Polarised light image of specimen Gg. Gerbilliscus gentryi, Bed I, Level FLKN1 M1.

a. Birefringent brightness is attributed to collagen. FW = 3.922 mm; b) Detail of bright domains and osteocyte lacunae interspersed among them. FW = 0.324 mm.

Extended Data Fig. 4 Polarised light image of specimen Gi. Gerbilliscus sp. indet, Bed I, Level DK.

a. Birefringent brightness is attributed to collagen. FW = 4.506 mm; b) Detail of bright domains and osteocyte lacunae interspersed among them. FW = 0.324 mm.

Extended Data Fig. 5 Polarised light image of specimen Xi. Xerus cf. inauris, Bed I, Level FLKN1 M3.

a. Birefringent brightness is attributed to collagen. FW = 4.434 mm; b) Detail of bright domains and osteocyte lacunae interspersed among them. FW = 0.324 mm.

Extended Data Fig. 6 BSE-SEM image of specimen M-D. Mus sp. or Dendromus sp., Bed I, Level FLKN1 M3.

a. Macroscopic view of the bone fragment. FW = 1.515 mm; b. Detail of bone and osteocyte lacunae and their associated canaliculi. Large cracks are due to diagenesis or preparation. FW = 0.25 mm.

Extended Data Fig. 7 BSE-SEM image of specimen Sm. Saccostomus cf. mearnsi, Bed I, Level FLKN1.

a. Macroscopic view of the bone fragment. FW = 1.329 mm; b. Detail of bone illustrating diagenetically disorganized bony structure but preserving some vascular canals and osteocyte lacunae. FW = 0.25 mm.

Extended Data Fig. 8 BSE-SEM image of specimen Gg. Gerbilliscus gentryi, Bed I, Level FLKN1 M1.

a. Macroscopic view of the bone fragment. FW = 3.726 mm; b. Detail of bone illustrating a vascular canal, mineralization density variation, and osteocyte lacunae and their associated canaliculi. FW = 0.25 mm.

Extended Data Fig. 9 BSE-SEM image of specimen Gi. Gerbilliscus sp. indet, Bed I, Level DK.

a. Macroscopic view of the bone fragment. FW = 4.261 mm; b. Detail of bone illustrating a vascular canal (bottom), mineralization density variation, and osteocyte lacunae and their associated canaliculi. Large cracks are due to diagenesis or preparation. FW = 0.25 mm.

Extended Data Fig. 10 BSE-SEM image of specimen Xi, Xerus cf. inauris, Bed I, Level FLKN1 M3.

a. Macroscopic view of the bone fragment. FW = 4.211 mm; b. Detail of bone illustrating a vascular canal, mineralization density variation, and osteocyte lacunae and their associated canaliculi. FW = 0.25 mm.

Supplementary information

Supplementary Information

Supplementary Figs 1–10.

Reporting Summary

Supplementary Table 1

Detailed list of samples.

Supplementary Table 2

Calcium/phosphate ratios from the study sample.

Supplementary Table 3

UM-HET3 and C57BL-6J mice and diets.

Supplementary Table 4

Olduvai Gorge Mus sp. or Dendromus sp., extant MNHN CD, palaeosols.

Supplementary Table 5

Olduvai Gorge Saccostomus cf. mearnsi, extant MNHN 1991-817, palaeosols.

Supplementary Table 6

Olduvai Gorge Gerbilliscus gentryi, extant MNHN NC, palaeosols.

Supplementary Table 7

Olduvai Gorge Gerbilliscus sp. indet, MNHN NC, palaeosols.

Supplementary Table 8

Olduvai Gorge Xerus cf. inauris, MNHN 2005-575, palaeosols.

Supplementary Table 9

Olduvai Gorge, Kolpochoerus majus, von Koenigswald 1854.

Supplementary Table 10

Chiwondo Beds, Elephas recki shungurensis, EE, palaeosol HCRP-RC-11.

Supplementary Table 11

Makapansgat, Bovidae, EW, palaeosol TF12.

Supplementary Table 12

Site metabolite comparisons.

Supplementary Table 13

OG soil carbonates.

Supplementary Table 14

Statistical tests.

Supplementary Table 15

Fossil Bone Proteomics.

Supplementary Table 16

Summary statistics.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article

Bromage, T.G., Denys, C., De Jesus, C.L. et al. Palaeometabolomes yield biological and ecological profiles at early human sites.
Nature (2025). https://doi.org/10.1038/s41586-025-09843-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41586-025-09843-w


Source: Ecology - nature.com

Effect of irrigation and bio-fertilizers on morphological and bio-chemical traits of milk thistle

CH4 and N2O emissions increased following the conversion of aquaculture ponds to rice monoculture and rice–shrimp coculture fields in southeast China