in

The dear enemy effect drives conspecific aggressiveness in an Azteca-Cecropia system

  • 1.

    Wilson, E. O. Sociobiology (Harvard Press, 1975).

    Google Scholar 

  • 2.

    Hölldobler, B. & Lumsden, C. J. Territorial strategies in ants. Science 210, 732–739 (1980).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 3.

    Baker, R. R. Insect territoriality. Annu. Rev. Entomol. 28, 65–89 (1983).

    Article 

    Google Scholar 

  • 4.

    Christensen, C. & Radford, A. N. Dear enemies or nasty neighbors? Causes and consequences of variation in the responses of group-living species to territorial intrusions. Behav. Ecol. 29, 1004–1013 (2018).

    Article 

    Google Scholar 

  • 5.

    Fisher, J. B. Evolution and bird sociality. In Evolution as a process (eds. Huxley, J., Hardy, A. C. & Ford, E. B.) 71–83. (Allen & Unwin, Australia, 1954).

  • 6.

    Temeles, E. J. The role of neighbours in territorial systems: when are they “dear enemies”?. Anim. Behav. 47, 339–350 (1994).

    Article 

    Google Scholar 

  • 7.

    Adams, E. S. Territoriality in ants (Hymenoptera: Formicidae): a review. Myrmecol. News 23, 101–118 (2016).

    Google Scholar 

  • 8.

    Müller, C. A. & Manser, M. B. “Nasty neighbours” rather than “dear enemies” in a social carnivore. Proc. R Soc. B Biol. Sci. 274, 959–965 (2007).

    Article 

    Google Scholar 

  • 9.

    Tanner, C. J. & Adler, F. R. To fight or not to fight: context-dependent interspecific aggression in competing ants. Anim. Behav. 77, 297–305 (2009).

    Article 

    Google Scholar 

  • 10.

    Mabelis, A. A. Wood ant wars. Neth. J. Zool. 29, 451–620 (1979).

    Article 

    Google Scholar 

  • 11.

    Hölldobler, B. Recruitment behavior, home range orientation and territoriality in harvester ants, Pogonomyrmex. Behav. Ecol. Sociobiol. 1, 3–44 (1976).

    Article 

    Google Scholar 

  • 12.

    Hölldobler, B. Tournaments and slavery in a desert ant. Science 80(192), 912–914 (1976).

    Article 
    ADS 

    Google Scholar 

  • 13.

    Carlin, N. F. & Hölldobler, B. The kin recognition system of carpenter ants (Camponotus spp.) – I. Hierarchical cues in small colonies. Behav. Ecol. Sociobiol. 19, 123–134 (1986).

  • 14.

    Carlin, N. F. & Hölldobler, B. The kin recognition system of carpenter ants (Camponotus spp.)—II. Larger colonies. Behav. Ecol. Sociobiol. 20, 209–217 (1987).

    Article 

    Google Scholar 

  • 15.

    Langen, T. A., Tripet, F. & Nonacs, P. The red and the black: habituation and the dear-enemy phenomenon in two desert Pheidole ants. Behav. Ecol. Sociobiol. 48, 285–292 (2000).

    Article 

    Google Scholar 

  • 16.

    Dimarco, R. D., Farji-Brener, A. G. & Premoli, A. C. Dear enemy phenomenon in the leaf-cutting ant Acromyrmex lobicornis: behavioral and genetic evidence. Behav. Ecol. 21, 304–310 (2010).

    Article 

    Google Scholar 

  • 17.

    Yagound, B., Crowet, M., Leroy, C., Poteaux, C. & Châline, N. Interspecific variation in neighbour–stranger discrimination in ants of the Neoponera apicalis complex. Ecol. Entomol. 42, 125–136 (2017).

    Article 

    Google Scholar 

  • 18.

    Benedek, K. & Kóbori, O. T. “Nasty neighbour” effect in Formica pratensis retz. (Hymenoptera: Formicidae). N. West J. Zool. 10, 245–250 (2014).

    Google Scholar 

  • 19.

    Newey, P. S., Robson, S. K. A. & Crozier, R. H. Know thine enemy: why some weaver ants do but others do not. Behav. Ecol. 21, 381–386 (2010).

    Article 

    Google Scholar 

  • 20.

    Sanada-Morimura, S. et al. Encounter-induced hostility to neighbors in the ant Pristomyrmex pungens. Behav. Ecol. 14, 713–718 (2003).

    Article 

    Google Scholar 

  • 21.

    Boulay, R., Cerdá, X., Simon, T., Roldan, M. & Hefetz, A. Intraspecific competition in the ant Camponotus cruentatus: should we expect the “dear enemy” effect?. Anim. Behav. 74, 985–993 (2007).

    Article 

    Google Scholar 

  • 22.

    Frizzi, F. et al. The rules of aggression: How genetic, chemical and spatial factors affect intercolony fights in a dominant species, the mediterranean acrobat ant Crematogaster scutellaris. PLoS ONE 10, 1–16 (2015).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Crosland, M. W. Kin recognition in the ant Rhytidoponera confusa I. Environmental odour. Anim. Behav. 37, 912–919 (1989).

    Article 

    Google Scholar 

  • 24.

    Beye, M., Neumann, P. & Moritz, R. F. A. Nestmate recognition and the genetic gestalt in the mound-building ant Formica polyctena. Insectes Soc. 44, 49–58 (1997).

    Article 

    Google Scholar 

  • 25.

    Beye, M., Neumann, P., Chapuisat, M., Pamilo, P. & Moritz, R. F. A. Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behav. Ecol. Soc. 43, 67–72 (1998).

    Article 

    Google Scholar 

  • 26.

    Martin, S. & Drijfhout, F. A review of ant cuticular hydrocarbons. J. Chem. Ecol. 35, 1151–1161 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Rico-Gray, V., Oliveira, P. S. & Oliveira, P. S. The Ecology and Evolution of Ant-plant Interactions (University of Chicago Press, 2007).

    Google Scholar 

  • 28.

    Adams, E. S. Boundary disputes in the territorial ant Azteca trigona: effects of asymmetries in colony size. Anim. Behav. 39, 321–328 (1990).

    Article 

    Google Scholar 

  • 29.

    Adams, E. S. Territory defense by the ant Azteca trigona: maintenance of an arboreal ant mosaic. Oecologia 97, 202–208 (1994).

    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 30.

    Frederickson, M. E. & Gordon, D. M. The intertwined population biology of two Amazonian myrmecophytes and their symbiotic ants. Ecology 90, 1595–1607 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Heil, M. & McKey, D. Protective and in ecological model systems in ecological and evolutionary research. Annu. Rev. Ecol. Evol. Syst. 34, 425–453 (2003).

    Article 

    Google Scholar 

  • 32.

    Hölldobler, B. The chemistry of social regulation: Multicomponent signals in ant societies. Proc. Natl. Acad. Sci. USA 92, 19–22 (1995).

    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 33.

    Howard, R. W. & Blomquist, G. J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50, 371–393 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Boulay, R., Hefetz, A., Soroker, V. & Lenoir, A. Camponotus fellah colony integration: worker individuality necessitates frequent hydrocarbon exchanges. Anim. Behav. 59, 1127–1133 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Errard, C., Hefetz, A. & Jaisson, P. Social discrimination tuning in ants: template formation and chemical similarity. Behav. Ecol. Sociobiol. 59, 353–363 (2006).

    Article 

    Google Scholar 

  • 36.

    Brandstaetter, A. S., Rössler, W. & Kleineidam, C. J. Friends and foes from an ant brain’s point of view—neuronal correlates of Colony Odors in a social insect. PLoS ONE 6, e21383 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 37.

    Leonhardt, S. D., Brandstaetter, A. S. & Kleineidam, C. J. Reformation process of the neuronal template for nestmate-recognition cues in the carpenter ant Camponotus floridanus. J. Comp. Physiol. 193, 993–1000 (2007).

    Article 

    Google Scholar 

  • 38.

    Guerrieri, F. J. et al. Ants recognize foes and not friends. Proc. R Soc. B Biol. Sci. 276, 2461–2468 (2009).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Newey, P. Not one odour but two: a new model for nestmate recognition. J. Theor. Biol. 270, 7–12 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Martin, S. J., Vitikainen, E., Drijfhout, F. P. & Jackson, D. Conspecific ant aggression is correlated with chemical distance, but not with genetic or spatial distance. Behav. Gen. 42, 323–331 (2012).

    Article 

    Google Scholar 

  • 41.

    Longino, J. T. Azteca ants in Cecropia trees: taxonomy, colony structure, and behavior. In Ant-Plant Interactions (eds Huxley, C. R. & Cutler, D. F.) 271–288 (Oxford University Press, 1991).

    Google Scholar 

  • 42.

    Schupp, E. W. Azteca protection of Cecropia: ant occupation benefits juvenile trees. Oecologia 70, 379–385 (1986).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 43.

    Oliveira, K. N. et al. The effect of symbiotic ant colonies on plant growth: a test using an Azteca-Cecropia system. PLoS ONE 10, 1–13 (2015).

    Google Scholar 

  • 44.

    Silva, C. A., Vieira, M. F. & Amaral, C. H. Floral attributes, ornithophily and reproductive success of Palicourea longepedunculata (Rubiaceae), a distylous shrub in southeastern Brazil. Rev. Bras. Bot. 33, 207–210 (2010).

    Article 

    Google Scholar 

  • 45.

    Veloso, H. P., Rangel Filho, A. L. R. & Lima, J. C. A. Classificação da Vegetação Brasileira Adaptada a um Sistema Universal (Ibge, 1991).

  • 46.

    Berg, C. C., Rosselli, P. F. & Davidson, D. W. Cecropia. Flora Neotropica. 94, 1–230 (2005). Retrieved April 22, 2020, from www.jstor.org/stable/4393938

  • 47.

    Emery, C. & de Voyage, M. M. Bedot et Pictel dans l’Archipel Malais. Formicides de l’Archipel Malais [Travel of MM. Bedot and Pictel in the Malaysian Archipelago. Formicides from the Malaysian Archipelago]. Rev. Suisse. Zool. 1, 187–229 (1893).

    Article 

    Google Scholar 

  • 48.

    Davidson, D. W. & Fisher, B. L. Symbiosis of ants with Cecropia as a function of light regime. In Ant-Plant Interactions (eds. Huxley, C. R. & Cutler, D. F.) 289–309 (Oxford University Press, UK, 1991).

  • 49.

    Davidson, D. W. & McKey, D. Ant-plant symbioses: stalking the chuyachaqui. Trends Ecol. Evol. 8, 326–332 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Fonseca, C. R. & Ganade, G. Asymmetries, compartments and null interactions in an Amazonian ant-plant community. J. Anim. Ecol. 65, 339–347 (1996).

    Article 

    Google Scholar 

  • 51.

    Fonseca, C. R. Amazonian ant-plant interactions and the nesting space limitation hypothesis. J. Trop. Ecol. 15, 807–825 (1999).

    Article 

    Google Scholar 

  • 52.

    Longino, J. T. Geographic variation and community structure in an ant-plant mutualism: Azteca and Cecropia in Costa Rica. Biotropica 21, 126–132 (1989).

    Article 

    Google Scholar 

  • 53.

    Bruna, E. M., Izzo, T. J., Inouye, B. D., Uriarte, M. & Vasconcelos, H. L. Asymmetric dispersal and colonization success of Amazonian plant-ants queens. PLoS ONE 6, e22937 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 54.

    Yu, D. W. et al. Experimental demonstration of species coexistence enabled by dispersal limitation. J. Anim. Ecol. 73, 1102–1114 (2004).

    Article 

    Google Scholar 

  • 55.

    Rocha, C. F. D. & Bergallo, H. G. Bigger ant colonies reduce herbivory and herbivore residence time on leaves of an ant-plant: Azteca muelleri vs. Coelomera ruficornis on Cecropia pachystachya. Oecologia 91, 249–252 (1992).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 56.

    Campbell, H., Fellowes, M. D. E. & Cook, J. M. Arboreal thorn-dwelling ants coexisting on the savannah ant-plant, Vachellia erioloba, use domatia morphology to select nest sites. Insectes Soc. 60, 373–382 (2013).

    Article 

    Google Scholar 

  • 57.

    Marting, P. R., Wcislo, W. T. & Pratt, S. C. Colony personality and plant health in the Azteca-Cecropia mutualism. Behav. Ecol. 29, 264–271 (2018).

    Article 

    Google Scholar 

  • 58.

    Tschinkel, W. R. Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle: ecological archives M063–002. Ecol. Monogr. 63, 425–457 (1993).

    Article 

    Google Scholar 

  • 59.

    Wills, B. D., Powell, S., Rivera, M. D. & Suarez, A. V. Correlates and consequences of worker polymorphism in ants. Ann. Rev. Entomol. 63, 575–598 (2018).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Holway, D. A., Suarez, A. V. & Case, T. J. Loss of intraspecific aggression in the success of a widespread invasive social insect. Science 282, 949–952 (1998).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 61.

    Giraud, T., Pedersen, J. S. & Keller, L. Evolution of supercolonies: the Argentine ants of southern Europe. PNAS 99, 6075–6079 (2002).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 62.

    Fischer, D. C. Fundamentos de cromatografia. Rev. Bras. Cienc. Farm. 42, 308–308 (2006).

    Google Scholar 

  • 63.

    Koo, I., Shi, X., Kim, S. & Zhang, X. IMatch2: Compound identification using retention index for analysis of gas chromatography-mass spectrometry data. J. Chromatogr. A 1337, 202–210 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    El-Sayed, A. M. The Pherobase: Database of Pheromones and Semiochemicals. https://www.pherobase.com. Accessed 11 July 2020 (2020).

  • 65.

    NIST Livro de Química na Web. Base de dados de Referência padrão do NIST número 69. http://webbook.nist.gov/chemistry/. Accessed 13 July 2020 (2016).

  • 66.

    Vidal, D. M., Fávaro, C. F., Guimaraes, M. M. & Zarbin, P. H. Identification and synthesis of the male-produced sex pheromone of the soldier beetle Chauliognathus fallax (Coleoptera: Cantharidae). J. Brazil. Chem. Soc. 27, 1506–1511 (2016).

    CAS 

    Google Scholar 

  • 67.

    Carlson, D. A., Bernier, U. R. & Sutton, B. D. Elution patterns from capillary GC for methyl-branched alkanes. J. Chem. Ecol. 24, 1845–1865 (1998).

    CAS 
    Article 

    Google Scholar 

  • 68.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org. Accessed 16 June 2020 (2017).

  • 69.

    Lanan, M. C. & Bronstein, J. L. An ant’s-eye view of an ant-plant protection mutualism. Oecologia 172, 779–790 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 70.

    Briefer, E., Rybak, F. & Aubin, T. When to be a dear enemy: flexible acoustic relationships of neighbouring skylarks Alauda arvensis. Anim. Behav. 76, 1319–1325 (2008).

    Article 

    Google Scholar 

  • 71.

    Hyman, J. Seasonal variation in response to neighbors and strangers by a territorial songbird. Ethology 111, 951–961 (2005).

    Article 

    Google Scholar 

  • 72.

    Sturgis, S. J. & Gordon, D. M. Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecol. News 16, 101–110 (2012).

    Google Scholar 

  • 73.

    Matthews, R. W. & Matthews, J. R. Insect Behavior (Springer, 2009).

    Google Scholar 

  • 74.

    Boucher, D. H., James, S. & Keeler, K. H. The ecology of mutualism. Annu. Rev. Ecol. Evol. Syst. 13, 315–347 (1982).

    Article 

    Google Scholar 

  • 75.

    Connor, R. C. The benefits of mutualism: a conceptual framework. Biol. Rev. 70, 427–457 (1995).

    Article 

    Google Scholar 

  • 76.

    Bronstein, J. L. The costs of mutualism. Am. Zool. 41, 825–839 (2001).

    Google Scholar 

  • 77.

    Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, 1990).

    Google Scholar 

  • 78.

    Dejean, A., Corbara, B., Orivel, J. & Leponce, M. Rainforest canopy ants: the implications of territoriality and predatory behavior. Funct. Ecol. Commun. 1, 105–120 (2007).

    Google Scholar 

  • 79.

    Dejean, A., Grangier, J., Leroy, C. & Orivel, J. Predation and aggressiveness in host plant protection: a generalization using ants from the genus Azteca. Naturwissenschaften 96, 57–63 (2009).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 80.

    Tripovich, J. S., Charrier, I., Rogers, T. L., Canfield, R. & Arnould, J. P. Acoustic features involved in the neighbour-stranger vocal recognition process in male Australian fur seals. Behav. Process. 79, 74–80 (2008).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Favaro, L., Gamba, M., Gili, C. & Pessani, D. Acoustic correlates of body size and individual identity in banded penguins. PLoS ONE 12, e0170001 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 82.

    Heinze, J., Foitzik, S., Hippert, A. & Hölldobler, B. Apparent dear-enemy phenomenon and environment-based recognition cues in the ant Leptothorax nylanderi. Ethology 102, 510–522 (1996).

    Article 

    Google Scholar 

  • 83.

    Vander Meer, R. K. & Morel, L. Nestmate Recognition in Ants. 79–103 (Pheromone communication in Soc. Insects, 1998).

  • 84.

    Provost, E., Blight, O., Tirard, A. & Renucci, M. Hydrocarbons and insects’ social physiology. Insect Physiology: New Research 19–72 (2008).

  • 85.

    Crozier, R. H. & Dix, M. W. Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav. Ecol. Sociobiol. 4, 217–224 (1979).

    Article 

    Google Scholar 

  • 86.

    Ozaki, M. et al. Behavior: ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309, 311–314 (2005).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 87.

    Starks, P. T. Recognition systems: from components to conservation. Ann. Zool. Fennici. 41, 689–690 (2004).

    Google Scholar 

  • 88.

    Franks, N., Blum, M., Smith, R. K. & Allies, A. B. Behavior and chemical disguise of cuckoo ant Leptothorax kutteri in relation to its host Leptothorax acervorum. J. Chem. Ecol. 16, 1431–1444 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 89.

    Hernández, J. V. et al. Leaf-cutter ant species (Hymenoptera: Atta) differ in the types of cues used to differentiate between self and others. Anim. Behav. 71, 945–952 (2006).

    Article 

    Google Scholar 

  • 90.

    Nehring, V. et al. Chemical disguise of myrmecophilous cockroaches and its implications for understanding nestmate recognition mechanisms in leaf-cutting ants. BMC Ecol. 16, 1–11 (2016).

    Article 
    CAS 

    Google Scholar 

  • 91.

    Hernández, J. V., López, H. & Jaffe, K. Nestmate recognition signals of the leaf-cutting ant Atta laevigata. J. Insect. Physiol. 48, 287–295 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Howard, R. W. & Blomquist, G. J. Chemical ecology and biochemistry of insect hydrocarbons. Ann. Rev. Entomol. 27, 149–172 (1982).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Sturgis, S. J., Greene, M. J. & Gordon, D. M. Hydrocarbons on harvester ant (Pogonomyrmex barbatus) Middens Guide Foragers to the Nest. J. Chem. Ecol. 37, 514–524 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Greene, M. J. & Gordon, D. M. Cuticular hydrocarbons inform task decisions. Nature 423, 32–32 (2003).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 95.

    Sano, K., Bannon, N. & Greene, M. J. Pavement ant workers (Tetramorium caespitum) assess cues coded in cuticular hydrocarbons to recognize conspecific and heterospecific non-nestmate ants. J. Insect. Behav. 31, 186–199 (2018).

    Article 

    Google Scholar 

  • 96.

    Guillem, R. M., Drijfhout, F. P. & Martin, S. J. Species-specific cuticular hydrocarbon stability within European Myrmica Ants. J. Chem. Ecol. 42, 1052–1062 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Sprenger, P. P. & Menzel, F. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmec. News 30, 1–26 (2020).

  • 98.

    Dahbi, A., Cerdá, X., Hefetz, A. & Lenoir, A. Social closure, aggressive behavior, and cuticular hydrocarbon profiles in the polydomous ant Cataglyphis iberica (Hymenoptera, Formicidae). J. Chem. Ecol. 22, 2173–2186 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 99.

    Boulay, R., Katzav-Gozansky, T., Hefetz, A. & Lenoir, A. Odour convergence and tolerance between nestmates through trophallaxis and grooming in the ant Camponotus fellah (Dalla Torre). Insectes Soc. 51, 55–61 (2004).

    Article 

    Google Scholar 

  • 100.

    Dunn, R. R. & Messier, S. H. Evidence for the opposite of the dear enemy phenomenon in termites. J. Insect. Behav. 12, 461–464 (1999).

    Article 

    Google Scholar 

  • 101.

    Temeles, E. J., Muir, A. B., Slutsky, E. B. & Vitousek, M. N. Effect of food reductions on territorial behavior of purple-throated caribs. Condor 106, 691 (2004).

    Article 

    Google Scholar 

  • 102.

    Pacheco, P. S. M. & Del-Claro, K. Pseudomyrmex concolor Smith (Formicidae: Pseudomyrmecinae) as induced biotic defence for host plant Tachigali myrmecophila Ducke (Fabaceae: Caesalpinioideae). Ecol. Entomol. 43, 782–793 (2018).

    Article 

    Google Scholar 

  • 103.

    Hager, F. A. & Krausa, K. Acacia ants respond to plant-borne vibrations caused by mammalian browsers. Curr. Biol. 29, 717-725.e3 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    How to prevent short-circuiting in next-gen lithium batteries

    How coal’s decline impacts county and school funding