in

Exploration for olive fruit fly parasitoids across Africa reveals regional distributions and dominance of closely associated parasitoids

  • 1.

    Wolfe, L. M. Why alien invaders succeed: Support for the escape-from-enemy hypothesis. Am. Nat. 160, 705–711. https://doi.org/10.1086/343872 (2002).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135. https://doi.org/10.1016/j.tree.2005.10.012 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Van Driesche, R. G. et al. Classical biological control for the protection of natural ecosystems. Biol. Control 54, S2–S33. https://doi.org/10.1016/j.biocontrol.2010.03.003 (2010).

    Article 

    Google Scholar 

  • 4.

    Hajek, A. E. et al. Exotic biological control agents: A solution or contribution to arthropod invasions?. Biol. Invasions 18, 953–969. https://doi.org/10.1007/s10530-016-1075-8 (2016).

    Article 

    Google Scholar 

  • 5.

    Schwarzlander, M., Hinz, H. L., Winston, R. L. & Day, M. D. Biological control of weeds: An analysis of introductions, rates of establishment and estimates of success, worldwide. Biocontrol 63, 319–331. https://doi.org/10.1007/s10526-018-9890-8 (2018).

    Article 

    Google Scholar 

  • 6.

    Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645. https://doi.org/10.1146/annurev-ento-010814-021005 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Hoddle, M. S., Lake, E. C., Minteer, C. R. & Daane, K. M. In Biological Control: A Global Initiative (eds Mason, P. G. & Dennis, N.) 69–92 (CSIRO Publishing, 2021).

    Google Scholar 

  • 8.

    Heimpel, G. E. & Cock, M. J. W. Shifting paradigms in the history of classical biological control. Biocontrol 63, 27–37. https://doi.org/10.1007/s10526-017-9841-9 (2018).

    Article 

    Google Scholar 

  • 9.

    Hoelmer, K. A. & Kirk, A. A. Selecting arthropod biological control agents against arthropod pests: Can the science be improved to decrease the risk of releasing ineffective agents?. Biol. Control 34, 255–264 (2005).

    Article 

    Google Scholar 

  • 10.

    Wang, X. G., Johnson, M. W., Daane, K. M. & Yokoyama, V. Y. Larger olive fruit size reduces the efficiency of Psyttalia concolor, as a parasitoid of the olive fruit fly. Biol. Control 49, 45–51. https://doi.org/10.1016/j.biocontrol.2009.01.004 (2009).

    Article 

    Google Scholar 

  • 11.

    Wang, X.-G., Levy, K., Son, Y., Johnson, M. W. & Daane, K. M. Comparison of the thermal performance between a population of the olive fruit fly and its co-adapted parasitoids. Biol. Control 60, 247–254. https://doi.org/10.1016/j.biocontrol.2011.11.012 (2012).

    Article 

    Google Scholar 

  • 12.

    Wharton, R. A. In Fruit flies: Their Biology, Natural Enemies and Control (eds Robinson, A. S. & Hooper, G.) 303–313 (Elsevier, 1989).

    Google Scholar 

  • 13.

    Purcell, M. F. Contribution of biological control to integrated pest management of tephritid fruit flies in the tropics and subtropics. Integr. Pest Manag. Rev. 3, 63–83 (1998).

    Article 

    Google Scholar 

  • 14.

    Ovruski, S. M., Aluja, M., Sivinski, J. & Wharton, R. A. Hymenopteran parasitoids on fruit-infesting Tephritidae (Diptera) in Latin America and the southern United States: Diversity, distribution, taxonomic status and their use in fruit fly biological control. Integr. Pest Manag. Rev. 5, 81–107 (2000).

    Article 

    Google Scholar 

  • 15.

    Mohamed, S. A., Ramadan, M. M. & Ekesi, S. In Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture (eds Ekesi, S. et al.) 325–368 (Springer International Publishing, 2006).

    Google Scholar 

  • 16.

    Garcia, F. R. M., Ovruski, S. M., Suarez, L., Cancino, J. & Liburd, O. E. Biological control of tephritid fruit flies in the Americas and Hawaii: A review of the use of parasitoids and predators. Insects https://doi.org/10.3390/insects11100662 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Wharton, R. A. & Yoder, M. J. Wharton RA, Yoder MJ. 2017. Parasitoids of fruit-infesting tephritidae. http://paroffit.org. Accessed on November 15, 2020. (2017).

  • 18.

    Daane, K. M. & Johnson, M. W. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 55, 155–169. https://doi.org/10.1146/annurev.ento.54.110807.090553 (2010).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Tzanakakis, M. E. Seasonal development and dormancy of insects and mites feeding on olive: A review. Neth. J. Zool. 52, 87–224 (2003).

    Article 

    Google Scholar 

  • 20.

    Green, P. S. A revision of Olea L. (Oleaceae). Kew Bull. 57, 91–140 (2002).

    Article 

    Google Scholar 

  • 21.

    Bon, M. C. et al. Populations of Bactrocera oleae (Diptera: Tephritidae) and its parasitoids in Himalayan Asia. Ann. Entomol. Soc. Am. 109, 81–91. https://doi.org/10.1093/aesa/sav114 (2016).

    Article 

    Google Scholar 

  • 22.

    Zygouridis, N. E., Augustinos, A. A., Zalom, F. G. & Mathiopoulos, K. D. Analysis of olive fly invasion in California based on microsatellite markers. Heredity 102, 402–412 (2009).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Augustinos, A. A. et al. Microsatellite analysis of olive fly populations in the Mediterranean indicates a westward expansion of the species. Genetica 125, 231–241 (2005).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Nardi, F. et al. Domestication of olive fly through a multi-regional host shift to cultivated olives: Comparative dating using complete mitochondrial genomes. Mol. Phylogenet. Evol. 57, 678–686. https://doi.org/10.1016/j.ympev.2010.08.008 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Neuenschwander, P., Bigler, F., Delucchi, V. & Michelakis, S. E. Natural enemies of preimaginal stages of Dacus oleae Gmel. (Dipt., Tephritidae) in Western Crete. I. Bionomics and phenologies. Boll Lab. Entomol Agrar Filippo Silvestri 40, 3–32 (1983).

    Google Scholar 

  • 26.

    Boccaccio, L. & Petacchi, R. Landscape effects on the complex of Bactrocera oleae parasitoids and implications for conservation biological control. Biocontrol 54, 607–616. https://doi.org/10.1007/s10526-009-9214-0 (2009).

    Article 

    Google Scholar 

  • 27.

    Borowiec, N. et al. Diversity and geographic distribution of the indigenous and exotic parasitoids of the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae) Southern France. IOBC/WPRS Bull. 79, 71–78 (2012).

    Google Scholar 

  • 28.

    Al Khatib, F. et al. An integrative approach to species discrimination in the Eupelmus urozonus complex (Hymenoptera, Eupelmidae), with the description of 11 new species from the Western Palaearctic. Syst. Entomol. 39, 806–862. https://doi.org/10.1111/syen.12089 (2014).

    Article 

    Google Scholar 

  • 29.

    Kapaun, T., Nadel, H., Headrick, D. & Vredevoe, L. Biology and parasitism rates of Pteromalus nr. myopitae (Hymenoptera: Pteromalidae), a newly discovered parasitoid of olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in coastal California. Biol. Control 53, 76–85. https://doi.org/10.1016/j.biocontrol.2009.11.002 (2010).

    Article 

    Google Scholar 

  • 30.

    Silvestri, F. Report on an expedition to Africa in search of natural enemies of fruit flies (Trupaneidae) with descriptions, observations and biological notes. Hawaii Board Agric. For. Div. Entomol. Bull. 3, 1–146 (1914).

    Google Scholar 

  • 31.

    Hoelmer, K. A., Kirk, A. A., Pickett, C. H., Daane, K. M. & Johnson, M. W. Prospects for improving biological control of olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), with introduced parasitoids (Hymenoptera). Biocontrol Sci. Technol. 21, 1005–1025. https://doi.org/10.1080/09583157.2011.594951 (2011).

    Article 

    Google Scholar 

  • 32.

    Greathead, D. J. & Greathead, A. H. Biological control of insect pests by insect parasitoids and predators: The BIOCAT database. Biocontrol News Inf. 13, 61N-68N (1992).

    Google Scholar 

  • 33.

    Neuenschwander, P. Searching parasitoids of Dacus oleae (Gmel) (Dipt., Tephritidae) in South Africa. J. Appl. Entomol. 94, 509–522 (1982).

    Google Scholar 

  • 34.

    Loni, A. Developmental rate of Opius concolor (Hym.: Braconidae) at various constant temperatures. Entomophaga 42, 359–366 (1997).

    Article 

    Google Scholar 

  • 35.

    Miranda, M. A., Miquel, M., Terrassa, J., Melis, N. & Monerris, M. Parasitism of Bactrocera oleae (Diptera, Tephritidae) by Psyttalia concolor (Hymenoptera, Braconidae) in the Balearic Islands (Spain). J. Appl. Entomol. 132, 798–805 (2008).

    Article 

    Google Scholar 

  • 36.

    Muller, F. A., Dias, N. P., Gottschalk, M. S., Garcia, F. R. M. & Nava, D. E. Potential distribution of Bactrocera oleae and the parasitoids Fopius arisanus and Psyttalia concolor, aiming at classical biological control. Biol. Control 132, 144–151. https://doi.org/10.1016/j.biocontrol.2019.02.014 (2019).

    Article 

    Google Scholar 

  • 37.

    Chardonnet, F., Blanchet, A., Hurtrel, B., Marini, F. & Smith, L. Mass-rearing optimization of the parasitoid Psyttalia lounsburyi for biological control of the olive fruit fly. J. Appl. Entomol. 143, 277–288. https://doi.org/10.1111/jen.12573 (2019).

    Article 

    Google Scholar 

  • 38.

    La-Spina, M. et al. Effect of exposure time on mass-rearing production of the olive fruit fly parasitoid, Psyttalia lounsburyi (Hymenoptera: Braconidae). J. Appl. Entomol. 142, 319–326. https://doi.org/10.1111/jen.12478 (2018).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Malausa, J. C. et al. Introductions of the African parasitoid Psyttalia lounsburyi in South of France for classical biological control of Bactrocera oleae. IOBC/WPRS Bull. 59, 163–170 (2010).

    Google Scholar 

  • 40.

    Daane, K. M. et al. Classic biological control of olive fruit fly in California, USA: Release and recovery of introduced parasitoids. Biocontrol 60, 317–330. https://doi.org/10.1007/s10526-015-9652-9 (2015).

    Article 

    Google Scholar 

  • 41.

    Wharton, R. A. & Gilstrap, F. Key to and status of opiine braconid (Hymenoptera) parasitoids used in biological control of Ceratitis and Dacus s.l. (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 76, 721–742 (1983).

    Article 

    Google Scholar 

  • 42.

    Sime, K. R. et al. Psyttalia ponerophaga (Hymenoptera: Braconidae) as a potential biological control agent of olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in California. Bull. Entomol. Res. 97, 233–242. https://doi.org/10.1017/S0007485307004865 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Sime, K. R. et al. The biology of Bracon celer as a parasitoid of the olive fruit fly. Biocontrol 51, 553–567. https://doi.org/10.1007/s10526-005-6079-8 (2006).

    Article 

    Google Scholar 

  • 44.

    Sime, K. R. et al. Diachasmimorpha longicaudata and D. kraussii (Hymenoptera: Braconidae), potential parasitoids of the olive fruit fly. Biocontrol Sci. Technol. 16, 169–179. https://doi.org/10.1080/09583150500188445 (2006).

    Article 

    Google Scholar 

  • 45.

    Sime, K. R., Daane, K. M., Messing, R. H. & Johnson, M. W. Comparison of two laboratory cultures of Psyttalia concolor (Hymenoptera: Braconidae), as a parasitoid of the olive fruit fly. Biol. Control 39, 248–255. https://doi.org/10.1016/j.biocontrol.2006.06.007 (2006).

    Article 

    Google Scholar 

  • 46.

    Mkize, N., Hoelmer, K. A. & Villet, M. H. A survey of fruit-feeding insects and their parasitoids occurring on wild olives, Olea europaea ssp cuspidata, in the Eastern Cape of South Africa. Biocontrol Sci. Technol. 18, 991–1004 (2008).

    Article 

    Google Scholar 

  • 47.

    Sime, K. R., Daane, K. M., Wang, X.-G., Johnson, M. W. & Messing, R. H. Evaluation of Fopius arisanus as a biological control agent for the olive fruit fly in California. Agric. For. Entomol. 10, 423–431. https://doi.org/10.1111/j.1461-9563.2008.00401.x (2008).

    Article 

    Google Scholar 

  • 48.

    Wang, X. G. & Messing, R. H. Potential interactions between pupal and egg- or larval-pupal parasitoids of tephritid fruit flies. Environ. Entomol. 33, 1313–1320. https://doi.org/10.1603/0046-225x-33.5.1313 (2004).

    Article 

    Google Scholar 

  • 49.

    Wang, X. G. & Messing, R. H. The ectoparasitic pupal parasitoid, Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae), attacks other primary tephritid fruit fly parasitoids: Host expansion and potential non-target impact. Biol. Control 31, 227–236 (2004).

    Article 

    Google Scholar 

  • 50.

    Wang, X.-G., Johnson, M. W., Yokoyama, V. Y., Pickett, C. H. & Daane, K. M. Comparative evaluation of two olive fruit fly parasitoids under varying abiotic conditions. Biocontrol 56, 283–293. https://doi.org/10.1007/s10526-010-9332-8 (2011).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Daane, K. M. et al. Biological control of the olive fruit fly in California. Calif. Agric. 65, 21–28 (2011).

    Article 

    Google Scholar 

  • 52.

    Wang, X. G. et al. Crop domestication relaxes both top-down and bottom-up effects on a specialist herbivore. Basic Appl. Ecol. 10, 216–227. https://doi.org/10.1016/j.baae.2008.06.003 (2009).

    Article 

    Google Scholar 

  • 53.

    Nadel, H., Daane, K. M., Hoelmer, K. A., Pickett, C. H. & Johnson, M. W. Non-target host risk assessment of the idiobiont parasitoid, Bracon celer (Hymenoptera: Braconidae), for biological control of olive fruit fly in California. Biocontrol Sci. Technol. 19, 701–715. https://doi.org/10.1080/09583150902974384 (2009).

    Article 

    Google Scholar 

  • 54.

    Wharton, R. A. et al. Parasitoids of medfly, Ceratitis capitata, and related tephritids in Kenyan coffee: A predominantly koinobiont assemblage. Bull. Entomol. Res. 90, 517–526 (2000).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Kimani-Njogu, S. W., Trostle, M. K., Wharton, R. A., Woolley, J. B. & Raspi, A. Biosystematics of the Psyttalia concolor species complex (Hymenoptera: Braconidae: Opiinae): the identity of populations attacking Ceratitis capitata (Diptera: Tephritidae) in coffee in Kenya. Biol. Control 20, 167–174 (2001).

    Article 

    Google Scholar 

  • 56.

    Rugman-Jones, P. F., Wharton, R., van Noort, T. & Stouthamer, R. Molecular differentiation of the Psyttalia concolor (Szépligeti) species complex (Hymenoptera: Braconidae) associated with olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), Africa. Biol. Control 49, 17–26. https://doi.org/10.1016/j.biocontrol.2008.12.005 (2009).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Billah, M. K. et al. Cross mating studies among five fruit fly parasitoid populations: Potential biological control implications for tephritid pests. Biocontrol 53, 709–724 (2008).

    Article 

    Google Scholar 

  • 58.

    Narayanan, E. S. & Chawla, S. S. Parasites of fruit fly pests of the world. Beitrage zur Entomologie 12, 437–476 (1962).

    Google Scholar 

  • 59.

    Neuenschwander, P. Searching parasitoids of Dacus oleae in South Africa. Zeitschrift fur Angewandte Entomologie 94, 509–522 (1982).

    Article 

    Google Scholar 

  • 60.

    Daane, K. M. et al. Psyttalia lounsburyi (Hymenoptera: Braconidae), potential biological control agent for the olive fruit fly in California. Biol. Control 44, 78–89. https://doi.org/10.1016/j.biocontrol.2007.08.010 (2008).

    Article 

    Google Scholar 

  • 61.

    Benelli, G. et al. Behavioral and electrophysiological responses of the parasitic wasp Psyttalia concolor (Szepligeti) (Hymenoptera: Braconidae) to Ceratitis capitata-induced fruit volatiles. Biol. Control 64, 116–124. https://doi.org/10.1016/j.biocontrol.2012.10.010 (2013).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Raspi, A. & Loni, A. Alcune note sull’allevamento massale di Opius concolor Szépligeti (Hym.: Braconidae) e su recnti tentative d’introduzione della specie in Toscana e Liguria. Frustula Entomol. 30, 135–145 (1994).

    Google Scholar 

  • 63.

    Johnson, M. W. et al. High temperature impacts olive fruit fly population dynamics in California’s Central Valley. Calif. Agric. 65, 29–33 (2011).

    Article 

    Google Scholar 

  • 64.

    Yokoyama, V. Y. et al. Performance of Psyttalia humilis (Hymenoptera: Braconidae) reared from irradiated host on olive fruit fly (Diptera: Tephritidae) in California. Environ. Entomol. 41, 497–507. https://doi.org/10.1603/en11252 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 65.

    Yokoyama, V. Y. et al. Response of Psyttalia cf. concolor to olive fruit fly (Diptera: Tephritidae), high temperature, food, and bait sprays in California. Environ. Entomol. 40, 315–323 (2010).

    Article 

    Google Scholar 

  • 66.

    Yokoyama, V. Y. et al. Field performance and fitness of an olive fruit fly parasitoid, Psyttalia humilis (Hymenoptera: Braconidae), mass reared on irradiated Medfly. Biol. Control 54, 90–99. https://doi.org/10.1016/j.biocontrol.2010.04.008 (2010).

    Article 

    Google Scholar 

  • 67.

    Wang, X. G. et al. Overwintering survival of olive fruit Fly (Diptera: Tephritidae) and two introduced parasitoids in California. Environ. Entomol. 42, 467–476. https://doi.org/10.1603/en12299 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 68.

    Daane, K. M., Wang, X. G., Johnson, M. W. & Cooper, M. L. Low temperature storage effects on two olive fruit fly parasitoids. Biocontrol 58, 175–185. https://doi.org/10.1007/s10526-012-9481-z (2013).

    CAS 
    Article 

    Google Scholar 

  • 69.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (accessed 20 Dec 2020); https://www.r-project.org/index.htm (2020).


  • Source: Ecology - nature.com

    How to prevent short-circuiting in next-gen lithium batteries

    How coal’s decline impacts county and school funding