Wolfe, L. M. Why alien invaders succeed: Support for the escape-from-enemy hypothesis. Am. Nat. 160, 705–711. https://doi.org/10.1086/343872 (2002).
Google Scholar
Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135. https://doi.org/10.1016/j.tree.2005.10.012 (2006).
Google Scholar
Van Driesche, R. G. et al. Classical biological control for the protection of natural ecosystems. Biol. Control 54, S2–S33. https://doi.org/10.1016/j.biocontrol.2010.03.003 (2010).
Google Scholar
Hajek, A. E. et al. Exotic biological control agents: A solution or contribution to arthropod invasions?. Biol. Invasions 18, 953–969. https://doi.org/10.1007/s10530-016-1075-8 (2016).
Google Scholar
Schwarzlander, M., Hinz, H. L., Winston, R. L. & Day, M. D. Biological control of weeds: An analysis of introductions, rates of establishment and estimates of success, worldwide. Biocontrol 63, 319–331. https://doi.org/10.1007/s10526-018-9890-8 (2018).
Google Scholar
Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645. https://doi.org/10.1146/annurev-ento-010814-021005 (2015).
Google Scholar
Hoddle, M. S., Lake, E. C., Minteer, C. R. & Daane, K. M. In Biological Control: A Global Initiative (eds Mason, P. G. & Dennis, N.) 69–92 (CSIRO Publishing, 2021).
Heimpel, G. E. & Cock, M. J. W. Shifting paradigms in the history of classical biological control. Biocontrol 63, 27–37. https://doi.org/10.1007/s10526-017-9841-9 (2018).
Google Scholar
Hoelmer, K. A. & Kirk, A. A. Selecting arthropod biological control agents against arthropod pests: Can the science be improved to decrease the risk of releasing ineffective agents?. Biol. Control 34, 255–264 (2005).
Google Scholar
Wang, X. G., Johnson, M. W., Daane, K. M. & Yokoyama, V. Y. Larger olive fruit size reduces the efficiency of Psyttalia concolor, as a parasitoid of the olive fruit fly. Biol. Control 49, 45–51. https://doi.org/10.1016/j.biocontrol.2009.01.004 (2009).
Google Scholar
Wang, X.-G., Levy, K., Son, Y., Johnson, M. W. & Daane, K. M. Comparison of the thermal performance between a population of the olive fruit fly and its co-adapted parasitoids. Biol. Control 60, 247–254. https://doi.org/10.1016/j.biocontrol.2011.11.012 (2012).
Google Scholar
Wharton, R. A. In Fruit flies: Their Biology, Natural Enemies and Control (eds Robinson, A. S. & Hooper, G.) 303–313 (Elsevier, 1989).
Purcell, M. F. Contribution of biological control to integrated pest management of tephritid fruit flies in the tropics and subtropics. Integr. Pest Manag. Rev. 3, 63–83 (1998).
Google Scholar
Ovruski, S. M., Aluja, M., Sivinski, J. & Wharton, R. A. Hymenopteran parasitoids on fruit-infesting Tephritidae (Diptera) in Latin America and the southern United States: Diversity, distribution, taxonomic status and their use in fruit fly biological control. Integr. Pest Manag. Rev. 5, 81–107 (2000).
Google Scholar
Mohamed, S. A., Ramadan, M. M. & Ekesi, S. In Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture (eds Ekesi, S. et al.) 325–368 (Springer International Publishing, 2006).
Garcia, F. R. M., Ovruski, S. M., Suarez, L., Cancino, J. & Liburd, O. E. Biological control of tephritid fruit flies in the Americas and Hawaii: A review of the use of parasitoids and predators. Insects https://doi.org/10.3390/insects11100662 (2020).
Google Scholar
Wharton, R. A. & Yoder, M. J. Wharton RA, Yoder MJ. 2017. Parasitoids of fruit-infesting tephritidae. http://paroffit.org. Accessed on November 15, 2020. (2017).
Daane, K. M. & Johnson, M. W. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 55, 155–169. https://doi.org/10.1146/annurev.ento.54.110807.090553 (2010).
Google Scholar
Tzanakakis, M. E. Seasonal development and dormancy of insects and mites feeding on olive: A review. Neth. J. Zool. 52, 87–224 (2003).
Google Scholar
Green, P. S. A revision of Olea L. (Oleaceae). Kew Bull. 57, 91–140 (2002).
Google Scholar
Bon, M. C. et al. Populations of Bactrocera oleae (Diptera: Tephritidae) and its parasitoids in Himalayan Asia. Ann. Entomol. Soc. Am. 109, 81–91. https://doi.org/10.1093/aesa/sav114 (2016).
Google Scholar
Zygouridis, N. E., Augustinos, A. A., Zalom, F. G. & Mathiopoulos, K. D. Analysis of olive fly invasion in California based on microsatellite markers. Heredity 102, 402–412 (2009).
Google Scholar
Augustinos, A. A. et al. Microsatellite analysis of olive fly populations in the Mediterranean indicates a westward expansion of the species. Genetica 125, 231–241 (2005).
Google Scholar
Nardi, F. et al. Domestication of olive fly through a multi-regional host shift to cultivated olives: Comparative dating using complete mitochondrial genomes. Mol. Phylogenet. Evol. 57, 678–686. https://doi.org/10.1016/j.ympev.2010.08.008 (2010).
Google Scholar
Neuenschwander, P., Bigler, F., Delucchi, V. & Michelakis, S. E. Natural enemies of preimaginal stages of Dacus oleae Gmel. (Dipt., Tephritidae) in Western Crete. I. Bionomics and phenologies. Boll Lab. Entomol Agrar Filippo Silvestri 40, 3–32 (1983).
Boccaccio, L. & Petacchi, R. Landscape effects on the complex of Bactrocera oleae parasitoids and implications for conservation biological control. Biocontrol 54, 607–616. https://doi.org/10.1007/s10526-009-9214-0 (2009).
Google Scholar
Borowiec, N. et al. Diversity and geographic distribution of the indigenous and exotic parasitoids of the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae) Southern France. IOBC/WPRS Bull. 79, 71–78 (2012).
Al Khatib, F. et al. An integrative approach to species discrimination in the Eupelmus urozonus complex (Hymenoptera, Eupelmidae), with the description of 11 new species from the Western Palaearctic. Syst. Entomol. 39, 806–862. https://doi.org/10.1111/syen.12089 (2014).
Google Scholar
Kapaun, T., Nadel, H., Headrick, D. & Vredevoe, L. Biology and parasitism rates of Pteromalus nr. myopitae (Hymenoptera: Pteromalidae), a newly discovered parasitoid of olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in coastal California. Biol. Control 53, 76–85. https://doi.org/10.1016/j.biocontrol.2009.11.002 (2010).
Google Scholar
Silvestri, F. Report on an expedition to Africa in search of natural enemies of fruit flies (Trupaneidae) with descriptions, observations and biological notes. Hawaii Board Agric. For. Div. Entomol. Bull. 3, 1–146 (1914).
Hoelmer, K. A., Kirk, A. A., Pickett, C. H., Daane, K. M. & Johnson, M. W. Prospects for improving biological control of olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), with introduced parasitoids (Hymenoptera). Biocontrol Sci. Technol. 21, 1005–1025. https://doi.org/10.1080/09583157.2011.594951 (2011).
Google Scholar
Greathead, D. J. & Greathead, A. H. Biological control of insect pests by insect parasitoids and predators: The BIOCAT database. Biocontrol News Inf. 13, 61N-68N (1992).
Neuenschwander, P. Searching parasitoids of Dacus oleae (Gmel) (Dipt., Tephritidae) in South Africa. J. Appl. Entomol. 94, 509–522 (1982).
Loni, A. Developmental rate of Opius concolor (Hym.: Braconidae) at various constant temperatures. Entomophaga 42, 359–366 (1997).
Google Scholar
Miranda, M. A., Miquel, M., Terrassa, J., Melis, N. & Monerris, M. Parasitism of Bactrocera oleae (Diptera, Tephritidae) by Psyttalia concolor (Hymenoptera, Braconidae) in the Balearic Islands (Spain). J. Appl. Entomol. 132, 798–805 (2008).
Google Scholar
Muller, F. A., Dias, N. P., Gottschalk, M. S., Garcia, F. R. M. & Nava, D. E. Potential distribution of Bactrocera oleae and the parasitoids Fopius arisanus and Psyttalia concolor, aiming at classical biological control. Biol. Control 132, 144–151. https://doi.org/10.1016/j.biocontrol.2019.02.014 (2019).
Google Scholar
Chardonnet, F., Blanchet, A., Hurtrel, B., Marini, F. & Smith, L. Mass-rearing optimization of the parasitoid Psyttalia lounsburyi for biological control of the olive fruit fly. J. Appl. Entomol. 143, 277–288. https://doi.org/10.1111/jen.12573 (2019).
Google Scholar
La-Spina, M. et al. Effect of exposure time on mass-rearing production of the olive fruit fly parasitoid, Psyttalia lounsburyi (Hymenoptera: Braconidae). J. Appl. Entomol. 142, 319–326. https://doi.org/10.1111/jen.12478 (2018).
Google Scholar
Malausa, J. C. et al. Introductions of the African parasitoid Psyttalia lounsburyi in South of France for classical biological control of Bactrocera oleae. IOBC/WPRS Bull. 59, 163–170 (2010).
Daane, K. M. et al. Classic biological control of olive fruit fly in California, USA: Release and recovery of introduced parasitoids. Biocontrol 60, 317–330. https://doi.org/10.1007/s10526-015-9652-9 (2015).
Google Scholar
Wharton, R. A. & Gilstrap, F. Key to and status of opiine braconid (Hymenoptera) parasitoids used in biological control of Ceratitis and Dacus s.l. (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 76, 721–742 (1983).
Google Scholar
Sime, K. R. et al. Psyttalia ponerophaga (Hymenoptera: Braconidae) as a potential biological control agent of olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in California. Bull. Entomol. Res. 97, 233–242. https://doi.org/10.1017/S0007485307004865 (2007).
Google Scholar
Sime, K. R. et al. The biology of Bracon celer as a parasitoid of the olive fruit fly. Biocontrol 51, 553–567. https://doi.org/10.1007/s10526-005-6079-8 (2006).
Google Scholar
Sime, K. R. et al. Diachasmimorpha longicaudata and D. kraussii (Hymenoptera: Braconidae), potential parasitoids of the olive fruit fly. Biocontrol Sci. Technol. 16, 169–179. https://doi.org/10.1080/09583150500188445 (2006).
Google Scholar
Sime, K. R., Daane, K. M., Messing, R. H. & Johnson, M. W. Comparison of two laboratory cultures of Psyttalia concolor (Hymenoptera: Braconidae), as a parasitoid of the olive fruit fly. Biol. Control 39, 248–255. https://doi.org/10.1016/j.biocontrol.2006.06.007 (2006).
Google Scholar
Mkize, N., Hoelmer, K. A. & Villet, M. H. A survey of fruit-feeding insects and their parasitoids occurring on wild olives, Olea europaea ssp cuspidata, in the Eastern Cape of South Africa. Biocontrol Sci. Technol. 18, 991–1004 (2008).
Google Scholar
Sime, K. R., Daane, K. M., Wang, X.-G., Johnson, M. W. & Messing, R. H. Evaluation of Fopius arisanus as a biological control agent for the olive fruit fly in California. Agric. For. Entomol. 10, 423–431. https://doi.org/10.1111/j.1461-9563.2008.00401.x (2008).
Google Scholar
Wang, X. G. & Messing, R. H. Potential interactions between pupal and egg- or larval-pupal parasitoids of tephritid fruit flies. Environ. Entomol. 33, 1313–1320. https://doi.org/10.1603/0046-225x-33.5.1313 (2004).
Google Scholar
Wang, X. G. & Messing, R. H. The ectoparasitic pupal parasitoid, Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae), attacks other primary tephritid fruit fly parasitoids: Host expansion and potential non-target impact. Biol. Control 31, 227–236 (2004).
Google Scholar
Wang, X.-G., Johnson, M. W., Yokoyama, V. Y., Pickett, C. H. & Daane, K. M. Comparative evaluation of two olive fruit fly parasitoids under varying abiotic conditions. Biocontrol 56, 283–293. https://doi.org/10.1007/s10526-010-9332-8 (2011).
Google Scholar
Daane, K. M. et al. Biological control of the olive fruit fly in California. Calif. Agric. 65, 21–28 (2011).
Google Scholar
Wang, X. G. et al. Crop domestication relaxes both top-down and bottom-up effects on a specialist herbivore. Basic Appl. Ecol. 10, 216–227. https://doi.org/10.1016/j.baae.2008.06.003 (2009).
Google Scholar
Nadel, H., Daane, K. M., Hoelmer, K. A., Pickett, C. H. & Johnson, M. W. Non-target host risk assessment of the idiobiont parasitoid, Bracon celer (Hymenoptera: Braconidae), for biological control of olive fruit fly in California. Biocontrol Sci. Technol. 19, 701–715. https://doi.org/10.1080/09583150902974384 (2009).
Google Scholar
Wharton, R. A. et al. Parasitoids of medfly, Ceratitis capitata, and related tephritids in Kenyan coffee: A predominantly koinobiont assemblage. Bull. Entomol. Res. 90, 517–526 (2000).
Google Scholar
Kimani-Njogu, S. W., Trostle, M. K., Wharton, R. A., Woolley, J. B. & Raspi, A. Biosystematics of the Psyttalia concolor species complex (Hymenoptera: Braconidae: Opiinae): the identity of populations attacking Ceratitis capitata (Diptera: Tephritidae) in coffee in Kenya. Biol. Control 20, 167–174 (2001).
Google Scholar
Rugman-Jones, P. F., Wharton, R., van Noort, T. & Stouthamer, R. Molecular differentiation of the Psyttalia concolor (Szépligeti) species complex (Hymenoptera: Braconidae) associated with olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), Africa. Biol. Control 49, 17–26. https://doi.org/10.1016/j.biocontrol.2008.12.005 (2009).
Google Scholar
Billah, M. K. et al. Cross mating studies among five fruit fly parasitoid populations: Potential biological control implications for tephritid pests. Biocontrol 53, 709–724 (2008).
Google Scholar
Narayanan, E. S. & Chawla, S. S. Parasites of fruit fly pests of the world. Beitrage zur Entomologie 12, 437–476 (1962).
Neuenschwander, P. Searching parasitoids of Dacus oleae in South Africa. Zeitschrift fur Angewandte Entomologie 94, 509–522 (1982).
Google Scholar
Daane, K. M. et al. Psyttalia lounsburyi (Hymenoptera: Braconidae), potential biological control agent for the olive fruit fly in California. Biol. Control 44, 78–89. https://doi.org/10.1016/j.biocontrol.2007.08.010 (2008).
Google Scholar
Benelli, G. et al. Behavioral and electrophysiological responses of the parasitic wasp Psyttalia concolor (Szepligeti) (Hymenoptera: Braconidae) to Ceratitis capitata-induced fruit volatiles. Biol. Control 64, 116–124. https://doi.org/10.1016/j.biocontrol.2012.10.010 (2013).
Google Scholar
Raspi, A. & Loni, A. Alcune note sull’allevamento massale di Opius concolor Szépligeti (Hym.: Braconidae) e su recnti tentative d’introduzione della specie in Toscana e Liguria. Frustula Entomol. 30, 135–145 (1994).
Johnson, M. W. et al. High temperature impacts olive fruit fly population dynamics in California’s Central Valley. Calif. Agric. 65, 29–33 (2011).
Google Scholar
Yokoyama, V. Y. et al. Performance of Psyttalia humilis (Hymenoptera: Braconidae) reared from irradiated host on olive fruit fly (Diptera: Tephritidae) in California. Environ. Entomol. 41, 497–507. https://doi.org/10.1603/en11252 (2012).
Google Scholar
Yokoyama, V. Y. et al. Response of Psyttalia cf. concolor to olive fruit fly (Diptera: Tephritidae), high temperature, food, and bait sprays in California. Environ. Entomol. 40, 315–323 (2010).
Google Scholar
Yokoyama, V. Y. et al. Field performance and fitness of an olive fruit fly parasitoid, Psyttalia humilis (Hymenoptera: Braconidae), mass reared on irradiated Medfly. Biol. Control 54, 90–99. https://doi.org/10.1016/j.biocontrol.2010.04.008 (2010).
Google Scholar
Wang, X. G. et al. Overwintering survival of olive fruit Fly (Diptera: Tephritidae) and two introduced parasitoids in California. Environ. Entomol. 42, 467–476. https://doi.org/10.1603/en12299 (2013).
Google Scholar
Daane, K. M., Wang, X. G., Johnson, M. W. & Cooper, M. L. Low temperature storage effects on two olive fruit fly parasitoids. Biocontrol 58, 175–185. https://doi.org/10.1007/s10526-012-9481-z (2013).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (accessed 20 Dec 2020); https://www.r-project.org/index.htm (2020).
Source: Ecology - nature.com