in

Individual differences in dominance-related traits drive dispersal and settlement in hatchery-reared juvenile brown trout

  • 1.

    Bullock, J. M., Kenward, R. E. & Hails, R. S. Dispersal Ecology (Blackwell, 2002).

    Google Scholar 

  • 2.

    Dieckmann, U., O’Hara, B. & Weisser, W. The evolutionary Ecology Of Dispersal. Trends Ecol. Evol. 14, 88–90 (1999).

    Article 

    Google Scholar 

  • 3.

    Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Blackwell Publishing, 2009).

    Google Scholar 

  • 4.

    Vøllestad, L. A. et al. Small-scale dispersal and population structure in stream-living brown trout (Salmo trutta) inferred by mark–recapture, pedigree reconstruction, and population genetics. Can. J. Fish. Aquat. Sci. 69, 1513–1524 (2012).

    Article 

    Google Scholar 

  • 5.

    Edelsparre, A. H., Shahid, A. & Fitzpatrick, M. J. Habitat connectivity is determined by the scale of habitat loss and dispersal strategy. Ecol. Evol. 8, 5508–5514 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Filipe, A. F. et al. Forecasting fish distribution along stream networks: Brown trout (Salmo trutta) in Europe. Divers. Distrib. 19, 1059–1071 (2013).

    Article 

    Google Scholar 

  • 7.

    Cote, J., Clobert, J., Brodin, T., Fogarty, S. & Sih, A. Personality-dependent dispersal: Characterization, ontogeny and consequences for spatially structured populations. Philos. Trans. R. Soc. B. 365, 4065–4076 (2010).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Cote, J. et al. Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography 40, 56–73 (2017).

    Article 

    Google Scholar 

  • 9.

    Comte, L. & Olden, J. D. Fish dispersal in flowing waters: A synthesis of movement- and genetic-based studies. Fish Fish. 19, 1063–1077 (2018).

    Article 

    Google Scholar 

  • 10.

    Ducatez, S. et al. Inter-individual variation in movement: is there a mobility syndrome in the large white butterfly Pieris brassicae?. Ecol. Entomol. 37, 377–385 (2012).

    Article 

    Google Scholar 

  • 11.

    Clobert, E., Le Galliard, J. F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Stevens, V. M. et al. Dispersal syndromes and the use of life-histories to predict dispersal. Evol. Appl. 6, 630–642 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Daufresne, M., Capra, H. & Gaudin, P. Downstream displacement of post emergent brown trout: Effects of development stage and water velocity. J. Fish Biol. 67, 599–614 (2005).

    Article 

    Google Scholar 

  • 14.

    Chapman, D. W. Aggressive behaviour in juvenile coho salmon as a cause of emigration. J. Fish. Res. Bd. Can. 19, 1047–1079 (1962).

    Article 

    Google Scholar 

  • 15.

    McCarthy, I. D. Competitive ability is related to metabolic asymmetry in juvenile rainbow trout. J. Fish Biol. 59, 1002–1014 (2001).

    Article 

    Google Scholar 

  • 16.

    Metcalfe, N. B., Taylor, A. C. & Thorpe, J. E. Metabolic rate, social status and life-history strategies in Atlantic salmon. Anim. Behav. 49, 431–436 (1995).

    Article 

    Google Scholar 

  • 17.

    Lahti, K., Huuskonen, H., Laurila, A. & Piironen, J. Metabolic rate and aggressiveness between Brown Trout populations. Funct. Ecol. 16, 167–174 (2002).

    Article 

    Google Scholar 

  • 18.

    Fraser, D. J., Weir, L. K., Darwish, T. L., Eddington, J. D. & Hutchings, J. A. Divergent compensatory growth responses within species: Linked to contrasting migrations in salmon?. Oecologia 153, 543–553 (2007).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 19.

    Swain, D. P. & Holtby, L. B. Differences in morphology and agonistic behaviour in coho salmon (Oncorhynchus kisutch) rearing in a lake or its tributary stream. Can. J. Fish. Aquat. Sci. 46, 1406–1414 (1989).

    Article 

    Google Scholar 

  • 20.

    Kaiser, A., Merckx, T. & Van Dyck, H. Personality traits influence contest outcome, and vice versa, in a territorial butterfly. Sci. Rep. 9, 2778 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 21.

    Studds, C. E., Kyser, T. K. & Marra, P. P. Natal dispersal driven by environmental conditions interacting across the annual cycle of a migratory songbird. Proc. Natl. Acad. Sci. 105, 2929–2933 (2008).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 22.

    Behr, D. M., McNutt, J. W., Ozgul, A. & Cozzi, G. When to stay and when to leave? Proximate causes of dispersal in an endangered social carnivore. J. Anim. Ecol. 89, 2356–2366. https://doi.org/10.1111/1365-2656.13300 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 23.

    Keenleyside, M. H. & Yamamoto, F. T. Territorial behaviour of juvenile Atlantic salmon (Salmo salar L.). Behaviour 19, 139–169 (1962).

    Article 

    Google Scholar 

  • 24.

    Duckworth, R. A. & Badyaev, A. V. Coupling of dispersal and aggression facilitates the the rapid range expansion of a passerine bird. Proc. Natl. Acad. Sci. USA. 104, 15017–15022 (2007).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 25.

    Peery, C. A. & Bjornn, T. C. Dispersal of hatchery-reared chinook salmon parr following release into four Idaho streams. N. Am. J. Fish. Manag. 20, 19–27 (2000).

    Article 

    Google Scholar 

  • 26.

    Nagata, M. & Irvine, J. R. Differential dispersal patterns of male and female masu salmon fry. J. Fish Biol. 51, 601–606 (1997).

    Article 

    Google Scholar 

  • 27.

    Li, X.-Y. & Kokko, H. Sex-biased dispersal: A review of the theory. Biol. Rev. 94, 721–736. https://doi.org/10.1111/brv.12475 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Hutchings, J. A. & Gerber, L. Sex-biased dispersal in a salmonid fish. Proc. R. Soc. B. 269, 2487–2493. https://doi.org/10.1098/rspb.2002.2176 (2002).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Bekkevold, D., Hansen, M. M. & Mensberg, K.-L.D. Genetic detection of sex-specific dispersal in historical and contemporary populations of anadromous brown trout Salmo trutta. Mol. Ecol. 13, 1707–1712. https://doi.org/10.1111/j.1365-294X.2004.02156.x (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Biro, P. A. & Stamps, J. A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior?. Trends Ecol. Evol. 25, 653–659 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Le Galliard, J. F., Paquet, M., Cisel, M. & Montes-Poloni, L. Personality and the pace-of-life syndrome: Variation and selection on exploration, metabolism and locomotor performances. Funct. Ecol. 27, 136–144 (2013).

    Article 

    Google Scholar 

  • 32.

    Cano, J. M. & Nicieza, A. G. Temperature, metabolic rate, and constraints on locomotor performance in ectotherm vertebrates. Funct. Ecol. 20, 464–470 (2006).

    Article 

    Google Scholar 

  • 33.

    Van Leeuwen, T. E., Rosenfeld, J. S. & Richards, J. G. Adaptive tradeoffs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams. J. Anim. Ecol. 80, 1012–1023 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Sundström, L. F., Petersson, E., Höjesjö, J., Johnsson, J. I. & Järvi, T. Hatchery selection promotes boldness in newly hatched brown trout (Salmo trutta): Implications for dominance. Behav. Ecol. 15, 192–198 (2004).

    Article 

    Google Scholar 

  • 35.

    Clobert, J., Ims, R. A. & Rousset, F. Causes, mechanisms and consequences of dispersal. In Ecology, Genetics and Evolution of Metapopulations (eds Hanski, I. & Gaggiotti, O. E.) 307–336 (Elsevier Academic Press, 2004).

    Google Scholar 

  • 36.

    Bohlin, T., Sundström, L. F., Johnsson, J. I., Höjesjö, J. & Pettersson, J. Density-dependent growth in brown trout: Effects of introducing wild and hatchery fish. J. Anim. Ecol. 71, 683–692 (2002).

    Article 

    Google Scholar 

  • 37.

    Gerking, S. D. The restricted movement of fish populations. Biol. Rev. 34, 221–242 (1959).

    Article 

    Google Scholar 

  • 38.

    Rodríguez, M. A. Restricted movement in stream fish: The paradigm is incomplete, not lost. Ecology 83, 1–13 (2002).

    Article 

    Google Scholar 

  • 39.

    Sánchez-González, J.-R. & Nicieza, A. G. Phenotypic convergence of artificially reared and wild trout is mediated by shape plasticity. Ecol. Evol. 7, 5922–5929 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Webb, P. W. Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 24, 107–120 (1984).

    Article 

    Google Scholar 

  • 41.

    Blake, R. W. Fish functional design and swimming performance. J. Fish Biol. 65, 1193–1222 (2010).

    Article 

    Google Scholar 

  • 42.

    Lowe, W. H. What drives long-distance dispersal? A test of theoretical predictions. Ecology 90, 1456–1462 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Nicieza, A. G. Morphological variation between geographically disjunct populations of Atlantic salmon: The effects of ontogeny and habitat shift. Funct. Ecol. 9, 448–456 (1995).

    Article 

    Google Scholar 

  • 44.

    Billman, E. J. et al. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha that express different migratory phenotypes in the Willamette River, Oregon, USA. J. Fish Biol. 85, 1097–1110. https://doi.org/10.1111/jfb.12482 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Langerhans, R. B. & Reznick, D. N. Ecology and Evolution of Swimming Performance in Fishes: Predicting Evolution with Biomechanics. Fish Locomotion: An Ethoecological Perspective (Science Publishers, 2010).

    Google Scholar 

  • 46.

    Cano-Barbacil, C. et al. Key factors explaining critical swimming speed in freshwater fish: A review and statistical analysis for Iberian species. Sci. Rep. 10, 18947. https://doi.org/10.1038/s41598-020-75974-x (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 47.

    Johnsson, J. I., Nöbbelin, F. & Bohlin, T. Territorial competition among wild brown trout fry: effects of ownership and body size. J. Fish Biol. 54, 469–472 (1999).

    Article 

    Google Scholar 

  • 48.

    Deverill, J. I., Adams, C. E. & Bean, C. W. Prior residence, aggression and territory acquisition in hatchery-reared and wild brown trout. J. Fish Biol. 55, 868–875 (1999).

    Article 

    Google Scholar 

  • 49.

    Weiss, S. & Schmutz, S. Performance of hatchery-reared brown trout and their effects on wild fish in two small Austrian streams. Trans. Am. Fish. Soc. 128, 302–316 (1999).

    Article 

    Google Scholar 

  • 50.

    Fagan, W. F. Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83, 3243–3249 (2002).

    Article 

    Google Scholar 

  • 51.

    Álvarez, D. & Nicieza, A. G. Is metabolic rate a reliable predictor of growth and survival of brown trout (Salmo trutta) in the wild?. Can. J. Fish. Aquat. Sci. 62, 643–649 (2005).

    Article 

    Google Scholar 

  • 52.

    Álvarez, D., Cano, J. M. & Nicieza, A. G. Microgeographic variation in metabolic rate and energy storage of brown trout: Countergradient selection or thermal sensitivity?. Evol. Ecol. 20, 345–363 (2006).

    Article 

    Google Scholar 

  • 53.

    Valentin, A. E. et al. Arching effect on fish body shape in geometric morphometric studies. J. Fish Biol. 73, 623–638 (2008).

    Article 

    Google Scholar 

  • 54.

    Leblanc, C. A. & Noakes, D. L. Visible Iiplant elastomer (VIE) tags for marking small rainbow trout. N. Am. J. Fish. Manag. 32, 716–719 (2012).

    Article 

    Google Scholar 

  • 55.

    Rohlf, F. J. tpsDig2: A Program Digitize Landmarks and Outlines (Springer, 2013).

    Google Scholar 

  • 56.

    Zelditch, M. L., Swiderski, D. L., Sheets, H. D. & Fink, W. L. Geometric Morphometrics for Biologists: A Primer (Elsevier Academic Press, 2004).

    Google Scholar 

  • 57.

    Rohlf, F. J. tpsRelw: Relative Warps Analysis (Spinger, 2013).

    Google Scholar 

  • 58.

    Horton, R. E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 56, 275–370 (1945).

    Article 

    Google Scholar 

  • 59.

    Fraser, N. H. C., Metcalfe, N. B. & Thorpe, J. E. Temperature-dependent switch between diurnal and nocturnal foraging in salmon. Proc. R. Soc. B Biol. Sci. 252, 135–139 (1993).

    Article 
    ADS 

    Google Scholar 

  • 60.

    Contor, C. R. & Griffith, J. S. Nocturnal emergence of juvenile rainbow trout from winter concealment relative to light intensity. Hydrobiologia 299, 179–183 (1995).

    Article 

    Google Scholar 

  • 61.

    Závorka, L., Aldvén, D., Näslund, J., Höjesjö, J. & Johnsson, J. I. Inactive trout come out at night: Behavioral variation, circadian activity, and fitness in the wild. Ecology 97, 2223–2231 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 62.

    Lyon, J. P. et al. Efficiency of electrofishing in turbid lowland rivers: Implications for measuring temporal change in fish populations. Can. J. Fish. Aquat. Sci. 71, 878–886 (2014).

    Article 

    Google Scholar 

  • 63.

    Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).

    Article 

    Google Scholar 

  • 64.

    Baddeley, A. & Turner, R. spatstat: An R package for analyzing spatial point patterns. J. Stat. Softw. 12, 1–42 (2005).

    Article 

    Google Scholar 

  • 65.

    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman & Hall/CRC Press Book, 2015).

    Google Scholar 

  • 66.

    R Development Core Team. R: A Language and Environment for Statistical Computing. R version 4.0.2: “Taking Off Again”. (2020).

  • 67.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-2

  • 68.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • 69.

    Benjamini, Y. Discovering the false discovery rate. J. R. Stat. Soc. B 57, 405–416 (2010).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 70.

    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. (Springer, 2002).

    Google Scholar 

  • 71.

    Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).

    Article 

    Google Scholar 

  • 72.

    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).

    Article 

    Google Scholar 

  • 73.

    Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A dynamic view of seagrass meadows in the wake of successful green turtle conservation

    Coastal reclamation alters soil microbial communities following different land use patterns in the Eastern coastal zone of China