Martínez-Vilalta, J. et al. Dynamics of non-structural carbohydrates in terrestrial plants: A global synthesis. Ecol. Monogr. 86, 495–516 (2016).
Google Scholar
Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees–from what we can measure to what we want to know. N. Phytol. 211, 386–403 (2016).
Google Scholar
Richardson, A. D. et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. N. Phytol. 197, 850–861 (2013).
Google Scholar
Doughty, C. E. et al. Source and sink carbon dynamics and carbon allocation in the Amazon basin. Glob. Biogeochem. Cycles 29, 645–655 (2015).
Google Scholar
Mcdowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).
Google Scholar
Sala, A., Piper, F. & Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. N. Phytol. 186, 274–281 (2010).
Google Scholar
Farquhar, G. D. & Sharkey, T. D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33, 317–345 (1982).
Google Scholar
Adams, H. D. et al. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. N. Phytol. 197, 1142–1151 (2013).
Google Scholar
O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J. & Hector, A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat. Clim. Chang. 4, 710–714 (2014).
Google Scholar
McDowell, N. G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155, 1051–1059 (2011).
Google Scholar
Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
Google Scholar
Phillips, O. L. et al. Drought Sensitivity of the Amazon Rainforest. Science (80-.) 323, 1344–1347 (2009).
Google Scholar
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 amazon drought. Science (80-.) 331, 554–554 (2011).
Google Scholar
Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016. Sci. Rep. 6, 1–7 (2016).
Google Scholar
Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl Acad. Sci. U.S.A. 112, 13172–13177 (2015).
Google Scholar
Jones, S. et al. The impact of a simple representation of non-structural carbohydrates on the simulated response of tropical forests to drought. Biogeosciences https://doi.org/10.5194/bg-2019-452 (2019).
Dünisch, O. & Puls, J. Changes in content of reserve materials in an evergreen, a semi-deciduous, and a deciduous Meliaceae species from the Amazon. J. Appl. Bot. 77, 10–16 (2003).
Würth, M. K. R., Peláez-Riedl, S., Wright, S. J. & Körner, C. Non-structural carbohydrate pools in a tropical forest. Oecologia 143, 11–24 (2005).
Google Scholar
Dickman, L. T. et al. Homoeostatic maintenance of nonstructural carbohydrates during the 2015–2016 El Niño drought across a tropical forest precipitation gradient. Plant Cell Environ. 42, 1705–1714 (2019).
Google Scholar
Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).
Google Scholar
Malhi, Y. et al. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 311–329 (2004).
Google Scholar
Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).
Google Scholar
Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).
Google Scholar
de Barros, F. V. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. N. Phytol. 223, 1253–1266 (2019).
Google Scholar
Coelho de Souza, F. et al. Evolutionary heritage influences Amazon tree ecology. Proc. R. Soc. B Biol. Sci. 283, 20161587 (2016).
Google Scholar
Dietze, M. C. et al. Nonstructural carbon in woody plants. Annu. Rev. Plant Biol. 65, 667–687 (2014).
Google Scholar
Tixier, A., Orozco, J., Amico Roxas, A., Earles, J. M. & Zwieniecki, M. A. Diurnal variation in non-structural carbohydrate storage in trees: remobilization and vertical mixing. Plant Physiol. 178, 1602–1613 (2018).
Google Scholar
Landhäusser, S. M. et al. Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. Tree Physiol. 38, 1764–1778 (2018).
Google Scholar
MacNeill, G. J. et al. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J. Exp. Bot. 68, 4433–4453 (2017).
Google Scholar
Poorter, L. & Kitajima, K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 88, 1000–1011 (2007).
Google Scholar
Nikinmaa, E. et al. Assimilate transport in phloem sets conditions for leaf gas exchange. Plant Cell Environ. 36, 655–669 (2013).
Google Scholar
Tyree, M. T. & Ewers, F. W. The hydraulic architecture of trees and other woody plants. N. Phytol. 119, 345–360 (1991).
Google Scholar
Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).
Google Scholar
Restrepo-Coupe, N. et al. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. Meteorol. 182–183, 128–144 (2013).
Google Scholar
AbdElgawad, H. et al. Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. Plant. Cell Environ. https://doi.org/10.1111/pce.13813 (2020).
Malhi, Y. et al. The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecol. Divers. 7, 85–105 (2014).
Google Scholar
Sánchez, F. J., Manzanares, M., De Andres, E. F., Tenorio, J. L. & Ayerbe, L. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. F. Crop. Res. 59, 225–235 (1998).
Google Scholar
Morgan, J. M. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35, 299–319 (1984).
Google Scholar
Thalmann, M. & Santelia, D. Starch as a determinant of plant fitness under abiotic stress. N. Phytol. 214, 943–951 (2017).
Google Scholar
Guo, J. S., Gear, L., Hultine, K. R., Koch, G. W. & Ogle, K. Non-structural carbohydrate dynamics associated with antecedent stem water potential and air temperature in a dominant desert shrub. Plant Cell Environ. https://doi.org/10.1111/pce.13749 (2020).
Kuang, Y., Xu, Y., Zhang, L., Hou, E. & Shen, W. Dominant trees in a subtropical forest respond to drought mainly via adjusting tissue soluble sugar and proline content. Front. Plant Sci. 8, 1–13 (2017).
Google Scholar
Turner, N. C. Turgor maintenance by osmotic adjustment: 40 years of progress. J. Exp. Bot. 69, 3223–3233 (2018).
Google Scholar
Kandler, O. & Hopf, H. in Carbohydrates: Structure and Function. Vol. 3, 221–270 (Elsevier, 1980).
Deslauriers, A. et al. Impact of warming and drought on carbon balance related to wood formation in black spruce. Ann. Bot. 114, 335–345 (2014).
Google Scholar
Ford, C. W. Accumulation of low molecular weight solutes in water-stressed tropical legumes. Phytochemistry 23, 1007–1015 (1984).
Google Scholar
Mitchell, P. J., O’Grady, A. P., Tissue, D. T., Worledge, D. & Pinkard, E. A. Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies. Tree Physiol. 34, 443–458 (2014).
Google Scholar
Malhi, Y. et al. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13, 439–450 (2002).
Google Scholar
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22, 610–613 (2011).
Google Scholar
Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Chang. 1, 1–5 (2016).
Sombroek, W. Spatial and temporal patterns of amazon rainfall. AMBIO A J. Hum. Environ. 30, 388–396 (2001).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Hoch, G., Popp, M. & Korner, C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98, 361–374 (2002).
Google Scholar
Dalagnol, R., Wagner, F. H., Galvão, L. S. & Aragão, L. E. O. C. The MANVI product: MODIS (MAIAC) nadir-solar adjusted vegetation indices (EVI and NDVI) for South America. Zenodo https://doi.org/10.5281/ZENODO.3159488 (2019).
Dalagnol, R., Wagner, F. H., Galvão, L. S., Nelson, B. W. & De Aragão, L. E. O. E. C. Life cycle of bamboo in the southwestern Amazon and its relation to fire events. Biogeosciences 15, 6087–6104 (2018).
Google Scholar
Fonseca, L. D. M. et al. Phenology and seasonal ecosystem productivity in an Amazonian floodplain forest. Remote Sens. 11, 1–17 (2019).
Google Scholar
Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
Google Scholar
Hijmans, R. J. et al. Raster: Geographic Data Analysis And Modeling. (R package, 2020).
Bivand, R. et al. Rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. (R package, 2020).
R Core Team. R: A Language And Environment For Statistical Computing. URL https://www.R-project.org/. (R Foundation for Statistical Computing, 2018).
Hull, T. E., Fairgrieve, T. F. & Tang, P. T. P. Implementing complex elementary functions using exception handling. ACM Trans. Math. Softw. 20, 215–244 (1994).
Google Scholar
De Mendiburu, F. Agricolae: Statistical Procedures For Agricultural Research (R package version 1.1, 2014).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (R package version 0.1.8, 2020).
Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).
Google Scholar
Coelho de Souza, F. et al. Trait data from: ‘Evolutionary heritage influences Amazon tree ecology’. ForestPlots.net . https://doi.org/10.5521/FORESTPLOTS.NET/2016_4 (2016).
Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 Package. October 2, 1–6 (2007).
Signori-Müller, C. et al. Trait data from: ‘Non-structural carbohydrates mediate seasonal water stress across Amazon forests’. ForestPlots.net 5521 https://doi.org/10.5521/forestplots.net/2021_3 (2021).
Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, 16 (2013).
Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).
Source: Ecology - nature.com