in

Optimising sampling and analysis protocols in environmental DNA studies

  • 1.

    Jane, S. F. et al. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol. Ecol. Resour. 15, 216–227 (2015).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Thomsen, P. F. & Willerslev, E. Environmental DNA: An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

    Article 

    Google Scholar 

  • 3.

    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Harper, L. R. et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of great crested newt (Triturus cristatus). Ecol. Evol. 8, 6330–6341 (2018).

    Article 

    Google Scholar 

  • 5.

    Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15, 543–556 (2015).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Willoughby, J. R., Wijayawardena, B. K., Sundaram, M., Swihart, R. K. & DeWoody, J. A. The importance of including imperfect detection models in eDNA experimental design. Mol. Ecol. Resour. 16, 837–844 (2016).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Burian, A. et al. Improving the reliability of eDNA data interpretation. Mol. Ecol. Resour. March, 1–12 (2021).

    Google Scholar 

  • 8.

    Klymus, K. E., Richter, C. A., Chapman, D. C. & Paukert, C. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol. Conserv. 183, 77–84 (2015).

    Article 

    Google Scholar 

  • 9.

    Buxton, A. S., Groombridge, J. J., Zakaria, N. B. & Griffiths, R. A. Seasonal variation in environmental DNA in relation to population size and environmental factors. Sci. Rep. 7, 46294 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Mächler, E., Deiner, K., Spahn, F. & Altermatt, F. Fishing in the water: Effect of sampled water volume on environmental DNA-based detection of macroinvertebrates. Environ. Sci. Technol. 50, 305–312 (2016).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Spens, J. et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: Advantage of enclosed filter. Methods Ecol. Evol. 8, 635–645 (2016).

    Article 

    Google Scholar 

  • 12.

    Djurhuus, A. et al. Evaluation of filtration and DNA extraction methods for environmental DNA biodiversity assessments across multiple trophic levels. Front. Mar. Sci. 4, 314 (2017).

    Article 

    Google Scholar 

  • 13.

    Lugg, W. H., Griffiths, J., van Rooyen, A. R., Weeks, A. R. & Tingley, R. Optimal survey designs for environmental DNA sampling. Methods Ecol. Evol. 9, 1049–1059 (2017).

  • 14.

    Mauvisseau, Q. et al. Influence of accuracy, repeatability and detection probability in the reliability of species-specific eDNA based approaches. Sci. Rep. 9, 1–11 (2019).

    Google Scholar 

  • 15.

    Willoughby, J. R., Wijayawardena, B. K., Sundaram, M., Swihart, R. K. & DeWoody, J. A. The importance of including imperfect detection models in eDNA experimental design. Mol. Ecol. Resour. 16 , 837–844 (2016).

  • 16.

    Griffin, J. E., Matechou, E., Buxton, A. S., Bormpoudakis, D. & Griffiths, R. A. Modelling environmental DNA data; Bayesian variable selection accounting for false positive and false negative errors. J. R. Stat. Soc. Ser. C Appl. Stat. 69, 377–392 (2020).

    MathSciNet 
    Article 

    Google Scholar 

  • 17.

    Lahoz-Monfort, J. J., Guillera-Arroita, G. & Tingley, R. Statistical approaches to account for false-positive errors in environmental DNA samples. Mol. Ecol. Resour. 16, 673–685 (2016).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Stratton, C., Sepulveda, A. J. & Hoegh, A. msocc: Fit and analyse computationally efficient multi-scale occupancy models in r. Methods Ecol. Evol. 11, 1113–1120 (2020).

    Article 

    Google Scholar 

  • 19.

    Tingley, R., Coleman, R., Gecse, N., van Rooyen, A. & Weeks, A. Accounting for false positive detections in occupancy studies based on environmental DNA: A case study of a threatened freshwater fish (Galaxiella pusilla). Environ. DNA 00, 1–10 (2020).

    Google Scholar 

  • 20.

    Schmidt, B. R., Kéry, M., Ursenbacher, S., Hyman, O. J. & Collins, J. P. Site occupancy models in the analysis of environmental DNA presence/absence surveys: A case study of an emerging amphibian pathogen. Methods Ecol. Evol. 4, 646–653 (2013).

    Article 

    Google Scholar 

  • 21.

    Vörös, J., Márton, O., Schmidt, B. R., Gál, J. T. & Jelić, D. Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. PLoS ONE 12, e0170945 (2017).

    Article 

    Google Scholar 

  • 22.

    Biggs, J. et al. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol. Conserv. 183, 19–28 (2015).

    Article 

    Google Scholar 

  • 23.

    Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9, 3085 (2019).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).

    Article 

    Google Scholar 

  • 25.

    Eiler, A., Löfgren, A., Hjerne, O., Nordén, S. & Saetre, P. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Sci. Rep. 8, 5452 (2018).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Nakagawa, H. et al. Comparing local- and regional-scale estimations of the diversity of stream fish using eDNA metabarcoding and conventional observation methods. Freshw. Biol. 63, 569–580 (2018).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Royle, J. A. & Link, W. A. Generalized site occupancy models allowing for false positives and false negative errors. Ecology 87, 835–841 (2006).

    Article 

    Google Scholar 

  • 28.

    Mackenzie, D. I. & Kendall, W. L. How should detection probability be incorporated into estimates of relative abundance?. Ecology 83, 2387–2393 (2002).

    Article 

    Google Scholar 

  • 29.

    MacKenzie, D. D., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).

    Article 

    Google Scholar 

  • 30.

    Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D. & Possingham, H. P. Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. Ecol. Appl. 13, 1790–1801 (2003).

    Article 

    Google Scholar 

  • 31.

    Dorazio, R. M. & Erickson, R. A. EDNAOCCUPUANCY: An R package for multi-scale occupancy modeling of environmental DNA data. Mol. Ecol. Resour. 18, 368–380 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Guillera-Arroita, G., Lahoz-Monfort, J. J., van Rooyen, A. R., Weeks, A. R. & Tingley, R. Dealing with false positive and false negative errors about species occurrence at multiple levels. Methods Ecol. Evol. 8, 1081–1091 (2017).

    Article 

    Google Scholar 

  • 33.

    Cole, D. J. Parameter Redundancy and Identi Ability (CRC Press, Boca Raton, 2020).

    Book 

    Google Scholar 

  • 34.

    Diana, A., Matechou, E., Griffin, J. E., Buxtron, A. S. & Griffiths, R. A. An Rshiny app for modelling environmental DNA data: Accounting for false positve and false negative observation error. bioRxiv https://doi.org/10.1101/2020.12.09.417600 (2020).

    Article 

    Google Scholar 

  • 35.

    Biggs, J. et al. Analytical and methodological development for improved surveillance of the great crested newt. Defra Project WC1067. (2014).

  • 36.

    Sewell, D., Beebee, T. J. C. & Griffiths, R. A. Optimising biodiversity assessments by volunteers: The application of occupancy modelling to large-scale amphibian surveys. Biol. Conserv. 143, 2102–2110 (2010).

    Article 

    Google Scholar 

  • 37.

    Buxton, A. S., Tracey, H. & Downs, N. C. How reliable is the habitat suitability index as a predictor of great crested newt presence or absence?. Herpertological J. 31, 51–57 (2021).

    Google Scholar 

  • 38.

    R-Core Team. R: language and environment for statistical computing. (2020).

  • 39.

    Oldham, R. S., Keeble, J., Swan, M. J. S. & Jeffcote, M. Evaluating the suitability of habitat for the great crested newt (Triturus cristatus). Herpetol. J. 10, 143–155 (2000).

    Google Scholar 


  • Source: Ecology - nature.com

    Tarsal morphology of ischyromyid rodents from the middle Eocene of China gives an insight into the group’s diversity in Central Asia

    Soil degradation influences soil bacterial and fungal community diversity in overgrazed alpine meadows of the Qinghai-Tibet Plateau