Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Google Scholar
Lotze, H. K. & Worm, B. Historical baselines for large marine animals. Trends Ecol. Evol. 24, 254–262 (2009).
Google Scholar
Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).
Google Scholar
Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).
Google Scholar
Erlandson, J. M. & Rick, T. C. Archaeology meets marine ecology: The antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Ann. Rev. Mar. Sci. 2, 231–251 (2010).
Google Scholar
McClenachan, L., Ferretti, F. & Baum, J. K. From archives to conservation: Why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 5, 349–359 (2012).
Google Scholar
Misarti, N., Finney, B. P., Maschner, H. & Wooller, M. J. Changes in northeast Pacific marine ecosystems over the last 4500 years: Evidence from stable isotope analysis of bone collagen from archaeological middens. Holocene 19, 1139–1151 (2009).
Google Scholar
Alter, S. E., Newsome, S. D. & Palumbi, S. R. Pre-whaling genetic diversity and population ecology in eastern Pacific gray whales: Insights from ancient DNA and stable isotopes. PLoS One 7, 35–39 (2012).
Szpak, P., Orchard, T. J., Mckechnie, I. & Gröcke, D. R. Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: Isotopic and zooarchaeological perspectives. J. Archaeol. Sci. 39, 1553–1571 (2012).
Google Scholar
McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl. Acad. Sci. USA 111, E807–E816 (2014).
Google Scholar
Orton, D. C. Archaeology as a tool for understanding past marine resource use and its impact. In Perspectives on Oceans Past (eds Schwerdtner Máñez, K. & Poulsen, B.) 47–69 (Springer, 2016).
Barrett, J. H., Locker, A. M. & Roberts, C. M. The origins of intensive marine fishing in medieval Europe: The English evidence. Proc. R. Soc. Lond. B. 271, 2417–2421 (2004).
Google Scholar
Edvardsson, R. The Role of Marine Resources in the Medieval Economy of Vestfirðir, Iceland (CUNY, 2019).
Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).
Google Scholar
Wada, E., Kabaya, Y. & Kurihara, Y. Stable isotopic structure of aquatic ecosystems. J. Biosci. 18, 483–499 (1993).
Google Scholar
Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847 (2012).
Google Scholar
Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta. 48, 1135–1140 (1984).
Google Scholar
Newsome, S. D. et al. Historic decline in primary productivity in western Gulf of Alaska and eastern Bering Sea: Isotopic analysis of northern fur seal teeth. Mar. Ecol. Prog. Ser. 332, 211–224 (2007).
Google Scholar
Guiry, E. J. et al. Lake Ontario salmon (Salmo salar) were not migratory: A long-standing historical debate solved through stable isotope analysis. Sci. Rep. 6, 1–7 (2016).
Google Scholar
Emslie, S. D. & Patterson, W. P. Abrupt recent shift in δ13C and δ15N values in Adélie Penguin eggshell in Antarctica. Proc. Natl. Acad. Sci. USA 104, 11666–11669 (2007).
Google Scholar
Emslie, S. D., Polito, M. J. & Patterson, W. P. Stable isotope analysis of ancient and modern Gentoo penguin egg membrane and the krill surplus hypothesis in Antarctica. Antarct. Sci. 25, 213–218 (2013).
Google Scholar
Drinkwater, K. F. The regime shift of the 1920s and 1930s in the North Atlantic. Prog. Oceanogr. 68, 134–151 (2006).
Google Scholar
Ástþórsson, Ó. S., Gíslason, Á. & Jónsson, S. Climate variability and the Icelandic marine ecosystem. Deep-Sea Res. PT II(54), 2456–2477 (2007).
Google Scholar
Edvardsson, R., Bárðarson, H., Patterson, W. P., Timsic, S. & Ólafsdóttir, G. Á. Change in Atlantic cod migrations and adaptability of early land-based fishers to severe climate variation in the North Atlantic. Quat. Res. (In press).
Dahl-Jensen, D. et al. Past temperatures directly from the Greenland ice sheet. Science 282, 268–271 (1998).
Google Scholar
Ogilvie, A. E. & Jonsson, T. The Iceberg in the Mist: Northern Research in Pursuit of a Little Age (Kluwer Academic, 2001).
Google Scholar
Jiang, H., Eiríksson, J., Schulz, M., Knudsen, K. L. & Seidenkrantz, M. S. Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene. Geology 33, 73–76 (2005).
Google Scholar
Vinther, B. M. et al. Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev. 29, 522–538 (2010).
Google Scholar
Patterson, W. P., Dietrich, K. A., Holmden, C. & Andrews, J. T. Two millennia of North Atlantic seasonality and implications for Norse colonies. Proc. Natl. Acad. Sci. USA 107, 5306–5310 (2010).
Google Scholar
Geffen, A. J. et al. High-latitude climate variability and its effect on fisheries resources as revealed by fossil cod otoliths. ICES J. Mar. Sci. 68, 1081–1089 (2011).
Google Scholar
Ólafsdóttir, G. Á., Westfall, K. M., Edvardsson, R. & Pálsson, S. Historical DNA reveals the demographic history of Atlantic cod (Gadus morhua) in medieval and early modern Iceland. Proc. R. Soc. Lond. B. 281, 20132976 (2014).
Ólafsdóttir, G. Á., Pétursdóttir, G., Bárðarson, H. & Edvardsson, R. A millennium of north-east Atlantic cod juvenile growth trajectories inferred from archaeological otoliths. PLoS One 12, e0187134 (2017).
Google Scholar
Pinnegar, J. K. & Engelhard, G. H. The ‘shifting baseline’phenomenon: A global perspective. Rev. Fish Biol. Fish. 18, 1–16 (2008).
Google Scholar
Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).
Google Scholar
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860–863 (1998).
Google Scholar
Kindsvater, H. K. & Palkovacs, E. P. Predicting eco-evolutionary impacts of fishing on body size and trophic role of Atlantic cod. Copeia 105, 475–482 (2017).
Google Scholar
Persson, A. & Hansson, L. A. Diet shift in fish following competitive release. CJFAS 56, 70–78 (1999).
Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: Confirmations from the past. PLoS One 9, e103132 (2014).
Google Scholar
Bas, M. et al. Back to the future? Late Holocene marine food web structure in a warm climatic phase as a predictor of trophodynamics in a warmer South-Western Atlantic Ocean. Glob. Change Biol. 25, 404–419 (2019).
Google Scholar
Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth-Sci. Rev. 106, 131–148 (2011).
Google Scholar
Bas, M. & Cardona, L. Effects of skeletal element identity, delipidation and demineralization on the analysis of stable isotope ratios of C and N in fish bone. J. Fish. Biol. 92, 420–437 (2018).
Google Scholar
Harrison, R. The Siglunes 2011/12 Archaeofauna. Interim Report on the Fishing Station’s Sampled Faunal Remains. (http://www.nabohome.org/uploads/ramonah/RH_Siglunes_Faunal_Report_5_30_2014.pdf (2014).
Lárusdóttir, B., Roberts, H. M., Þorgeirsdóttir, S. S., Harrison, R. & Sigurgeirsson, Á. Siglunes. Archaeological investigations in 2011. http://www.nabohome.org/uploads/ramonah/FS480-11121_Siglunes_2011.pdf (2012).
Leyden, J. J., Wassenaar, L. I., Hobson, K. A. & Walker, E. G. Stable hydrogen isotopes of bison bone collagen as a proxy for Holocene climate on the Northern Great Plains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 87–99 (2006).
Google Scholar
Craig, H. Standard for reporting concentration of deuterium and oxygen-18 in natural waters. Science 133, 1702–1703 (1961).
Google Scholar
DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).
Google Scholar
Hilton, G. M. et al. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Glob. Change Biol. 12, 611–625 (2006).
Google Scholar
Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).
Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Glob. Biogeochem. Cycles 13, 307–335 (1999).
Google Scholar
Quay, P., Sonnerup, R., Westby, T., Stutsman, J. & Mcnichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Glob. Biogeochem. Cycles 17, 1–20 (2003).
Google Scholar
Quay, P. D., Tilbrook, B. & Wong, C. S. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science 256, 74–79 (1992).
Google Scholar
Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.1 (2020).
Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
Google Scholar
Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545–562 (2012).
Google Scholar
Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).
Google Scholar
Þór, J. Þ. British Trawlers in Icelandic Waters: History of British Steam Trawling off Iceland, 1889–1916, and the Anglo-Icelandic Fisheries Dispute, 1896–1897 (Fjölvi, 1992).
Þór, J. Þ. Saga Sjávarútvegs á Íslandi. 1902–1939 Vélaöld (Bókaútgáfan Hólar, 2003).
Gill, A. B. The dynamics of prey choice in fish: The importance of prey size and satiation. J. Fish. Biol. 63, 105–116 (2003).
Google Scholar
Jennings, S. Size-based analyses of aquatic food webs. In Aquatic Food Webs: An Ecosystem Approach (eds Belgrano, A. et al.) 86–97 (Oxford University Press, 2005).
Google Scholar
Zenteno, L. et al. Dietary consistency of male South American sea lions (Otaria flavescens) in southern Brazil during three decades inferred from stable isotope analysis. Mar. Biol. 162, 275–289 (2015).
Google Scholar
Vales, D. G. et al. Holocene changes in the trophic ecology of an apex marine predator in the South Atlantic Ocean. Oecologia 183, 555–570 (2017).
Google Scholar
Bas, M. et al. Predicting habitat use by the Argentine hake Merluccius hubbsi in a warmer world: Inferences from the Middle Holocene. Oecologia 193, 461–474 (2020).
Google Scholar
Sharpe, D. M. & Chapman, L. J. Niche expansion in a resilient endemic species following introduction of a novel top predator. Freshw. Biol. 59, 2539–2554 (2014).
Google Scholar
Jaworski, A. & Ragnarsson, S. Á. Feeding habits of demersal fish in Icelandic waters: A multivariate approach. ICES J. Mar. Sci. 63, 1682–1694 (2006).
Google Scholar
Law, R. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57, 659–668 (2000).
Google Scholar
Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240 (2011).
Google Scholar
Jennings, S. & Van Der Molen, J. Trophic levels of marine consumers from nitrogen stable isotope analysis: Estimation and uncertainty. ICES J. Mar. Sci. 72, 2289–2300 (2015).
Google Scholar
MFRI. Atlantic cod Gadus morhua (MFRI Assessment Reports 2020). Marine and Freshwater Research Institute. https://www.hafogvatn.is/static/extras/images/01-cod_tr_isl1232625.pdf (2020).
Thorsteinsson, V., Pálsson, Ó. K., Tómasson, G. G., Jónsdóttir, I. G. & Pampoulie, C. Consistency in the behaviour types of the Atlantic cod: Repeatability, timing of migration and geo-location. Mar. Ecol. Prog. Ser. 462, 251–260 (2012).
Google Scholar
Source: Ecology - nature.com