Tripet, F., Toure, Y. T., Dolo, G. & Lanzaro, G. C. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am. J. Tropical Med. Hyg. 68, 1–5 (2003).
Google Scholar
Beehler, B. M. & Foster, M. S. Hotshots, hotspots, and female preference in the organization of lek mating systems. Am. Nat. 131, 203–219 (1988).
Google Scholar
Cator, L. J., Wyer, C. A. S. & Harrington, L. C. Mosquito sexual selection and reproductive control programs. Trends Parasitol. 37, 330–339 (2021).
Google Scholar
Charlwood, J. D. & Jones, M. D. R. Mating behaviour in the mosquito, Anopheles gambiae s.1.save. Physiol. Entomol. 4, 111–120 (1979).
Google Scholar
Charlwood, J. D. et al. The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from São Tomé Island. J. Vector Ecol. 27, 178–183 (2002).
Google Scholar
Mozūraitis, R. et al. Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nat. Ecol. Evol. 1395–1401 (2020).
Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411–415 (2021).
Google Scholar
Cator, L. J., Ng’Habi, K. R., Hoy, R. R. & Harrington, L. C. Sizing up a mate: variation in production and response to acoustic signals in Anopheles gambiae. Behav. Ecol. 21, 1033–1039 (2010).
Google Scholar
Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. “Singing on the wing” as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).
Google Scholar
Simões, P. M., Gibson, G. & Russell, I. J. Pre-copula acoustic behaviour of males in the malarial mosquitoes Anopheles coluzzii and Anopheles gambiae s.s. does not contribute to reproductive isolation. J. Exp. Biol. 220, 379–385 (2017).
Google Scholar
Maïga, H., Dabiré, R. K., Lehmann, T., Tripet, F. & Diabaté, A. Variation in energy reserves and role of body size in the mating system of Anopheles gambiae. J. Vector Ecol. 37, 289–297 (2012).
Google Scholar
Sawadogo, S. P. et al. Effects of age and size on Anopheles gambiae s.s. male mosquito mating success. J. Med. Entomol. 50, 285–293 (2013).
Google Scholar
Ng’habi, K. R. et al. Sexual selection in mosquito swarms: may the best man lose? Anim. Behav. 76, 105–112 (2008).
Google Scholar
Howell, P. I. & Knols, B. G. J. Male mating biology. Malar. J. 8, S8-S8, https://doi.org/10.1186/1475-2875-8-S2-S8 (2009).
Google Scholar
Aldersley, A. & Cator, L. J. Female resistance and harmonic convergence influence male mating success in Aedes aegypti. Sci. Rep. 9, 2145 (2019).
Google Scholar
Pantoja-Sánchez, H., Gomez, S., Velez, V., Avila, F. W. & Alfonso-Parra, C. Precopulatory acoustic interactions of the New World malaria vector Anopheles albimanus (Diptera: Culicidae). Parasites Vectors 12, 386–386 (2019).
Google Scholar
Ferveur, J.-F. & Cobb, M. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press 325–343 (2010).
Theresa, L. S. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38, 394–405 (1998).
Google Scholar
Chung, H. et al. A single gene affects both ecological divergence and mate choice in Drosophila. Science 343, 1148–1151 (2014).
Google Scholar
Grigoraki, L., Grau-Bové, X., Carrington Yates, H., Lycett, G. J. & Ranson, H. Isolation and transcriptomic analysis of Anopheles gambiae oenocytes enables the delineation of hydrocarbon biosynthesis. eLife 9, e58019 (2020).
Google Scholar
Howard, R. W. & Blomquist, G. J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50, 371–393 (2005).
Google Scholar
Ingleby, F. C. Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6, 732–742 (2015).
Google Scholar
Lang, J. T. & Foster, W. A. Is there a female sex pheromone in the mosquito Culiseta inornata? Environ. Entomol. 5, 1109–1115 (1976).
Google Scholar
Nijout, H. F. C. J. & George, B. Reproductive isolation in Stepgomyia mosquitoes. III Evidence for a sexual pheromone. Entomol. Exp. Appl. 14, 399–412 (1971).
Google Scholar
Lang, J. T. Contact sex pheromone in the mosquito Culiseta inornata (Diptera: Culicidae). J. Med. Entomol. 14, 448–454 (1977).
Google Scholar
Polerstock, A. R., Eigenbrode, S. D. & Klowden, M. J. Mating alters the cuticular hydrocarbons of female Anopheles gambiae sensu stricto and aedes Aegypti (Diptera: Culicidae). J. Med. Entomol. 39, 545–552 (2002).
Google Scholar
Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl Acad. Sci. USA 113, 9268–9273 (2016).
Google Scholar
Balabanidou, V. et al. Mosquitoes cloak their legs to resist insecticides. Proc. Biol. Sci. 286, 20191091 (2019).
Google Scholar
Yahouedo, G. A. et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci. Rep. 7, 11091 (2017).
Google Scholar
Baeshen, R. et al. Differential effects of inbreeding and selection on male reproductive phenotype associated with the colonization and laboratory maintenance of Anopheles gambiae. Malar. J. 13, 19 (2014).
Google Scholar
Toe, K. H. et al. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg. Infect. Dis. 20, 1691–1696 (2014).
Google Scholar
World Health Organization. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes. Geneva, Switzerland: World Health Organization (2013).
Toe, K. H., N’Fale, S., Dabire, R. K., Ranson, H. & Jones, C. M. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics 16, 146 (2015).
Google Scholar
Kwiatkowska, R. M. et al. Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallee du Kou, Burkina Faso. Gene 519, 98–106 (2013).
Google Scholar
Ingham, V. A. et al. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes. BMC Genomics 15, 1018 (2014).
Google Scholar
Blows, M. W. Interaction between natural and sexual selection during the evolution of mate recognition. Proc. Biol. Sci. 269, 1113–1118 (2002).
Google Scholar
Lane, S. M., Dickinson, A. W., Tregenza, T. & House, C. M. Sexual selection on male cuticular hydrocarbons via male-male competition and female choice. J. Evol. Biol. 29, 1346–1355 (2016).
Google Scholar
Steiger, S. et al. Sexual selection on cuticular hydrocarbons of male sagebrush crickets in the wild. Proc. Biol. Sci. 280, 20132353–20132353 (2013).
Google Scholar
Chung, H. & Carroll, S. B. Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioessays 37, 822–830, https://doi.org/10.1002/bies.201500014 (2015).
Google Scholar
Sawadogo, S. P. et al. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit. Vectors 6, 275 (2013).
Google Scholar
Arcaz, A. C. et al. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons. J. Exp. Biol. 219, 1675–1688 (2016).
Google Scholar
Hidalgo, K. et al. Distinct physiological, biochemical and morphometric adjustments in the malaria vectors Anopheles gambiae and A. coluzzii as means to survive dry season conditions in Burkina Faso. J. Exp. Biol. 70, 102–116 (2018).
Wagoner, K. M. et al. Identification of morphological and chemical markers of dry- and wet-season conditions in female Anopheles gambiae mosquitoes. Parasit. Vectors 7, 294 (2014).
Google Scholar
Wicker, C. & Jallon, J. M. Influence of ovary and ecdysteroids on pheromone biosynthesis in Drosophila melanogaster (Diptera: Drosophilidae). EJE 92, 197–202 (1995).
Google Scholar
Andersson, M. Sexual Selection. Princeton University Press (1994).
Fisher, R. The Genetical Theory of Natural Selection. The Clarendon Press, Oxford (1930).
Weatherhead, P. J. & Robertson, R. J. Offspring quality and the polygyny threshold: “The Sexy Son Hypothesis”. Am. Nat. 113, 201–208 (1979).
Google Scholar
Ryan, M. J. Sexual selection, receiver biases, and the evolution of sex differences. Science 281, 1999–2003 (1998).
Google Scholar
Rundle, H. D., Chenoweth, S. F. & Blows, M. W. The roles of natural and sexual selection during adaptation to a novel environment. Evolution 60, 2218–2225 (2006).
Google Scholar
Thailayil, J., Magnusson, K., Godfray, H. C. J., Crisanti, A. & Catteruccia, F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc. Natl Acad. Sci. USA 108, 13677–13681, https://doi.org/10.1073/pnas.1104738108 (2011).
Google Scholar
Charlwood, J. D. Studies on the bionomics of male Anopheles gambiae Giles and male Anopheles funestus Giles from southern Mozambique. J. Vector Ecol. 36, 382–394, https://doi.org/10.1111/j.1948-7134.2011.00179.x (2011).
Google Scholar
Glunt, K. D., Thomas, M. B. & Read, A. F. The effects of age, exposure history and malaria infection on the susceptibility of Anopheles mosquitoes to low concentrations of pyrethroid. PLoS ONE 6, e24968–e24968 (2011).
Google Scholar
Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163, https://doi.org/10.1186/1475-2875-7-163 (2008).
Google Scholar
Diabaté, A. et al. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol. Biol. 11, 184–184, https://doi.org/10.1186/1471-2148-11-184 (2011).
Google Scholar
Niang, A. et al. Does extreme asymmetric dominance promote hybridization between Anopheles coluzzii and Anopheles gambiae s.s. in seasonal malaria mosquito communities of West Africa? Parasit. Vectors 8, 586–586, https://doi.org/10.1186/s13071-015-1190-x (2015).
Google Scholar
Caputo, B. et al. Identification and composition of cuticular hydrocarbons of the major Afrotropical malaria vector Anopheles gambiae s.s. (Diptera: Culicidae): analysis of sexual dimorphism and age-related changes. J. Mass Spectrom. 40, 1595–1604, https://doi.org/10.1002/jms.961 (2005).
Google Scholar
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Google Scholar
Charlwood, J. Biological variation in Anopheles darlingi root. Mem. Inst. Oswaldo Cruz. 91, 391–398 (1996).
Google Scholar
Source: Ecology - nature.com