in

Conservation agriculture increases the soil resilience and cotton yield stability in climate extremes of the southeast US

  • 1.

    Livelihoods, To Build Resilient the Impact of Natural Hazards and Disasters on Agriculture. Food Agric. Organ. UN (2015).

  • 2.

    Smith, A., et al. US Billion-Dollar Weather & Climate Disasters 1980-2019. NOAA National Centers for Environmental Information: Asheville, NC, USA 15 (2019).

  • 3.

    Stocker, Thomas F., et al. Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change. (2014).

  • 4.

    Biasutti, M. & Seager, R. Projected changes in US rainfall erosivity. Hydrology Earth Syst. Sci. 19, 2945–2961 (2015).

  • 5.

    Hoomehr, S., Schwartz, J. S. & Yoder, D. C. Potential changes in rainfall erosivity under GCM climate change scenarios for the southern Appalachian region, USA. Catena 136, 141–151 (2016).

    Article 

    Google Scholar 

  • 6.

    Janowiak, M. et al. Adaptation resources for agriculture: responding to climate variability and change in the midwest and northeast. USDA (2018).

  • 7.

    Cooke, B. & Jiang, H. Outlook for US agricultural trade. Electronic Outlook Report from the Economic Research Service (2020).

  • 8.

    Alizadeh, M. R. et al. A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Sci. Adv. 6, eaaz4571 (2020).

    Article 

    Google Scholar 

  • 9.

    Gipson, J. & Joham, H. Influence of night temperature on growth and development of cotton (Gossypium hirsutum L.). I. Fruiting and Boll Development 1. Agron. J. 60, 292–295 (1968).

    Article 

    Google Scholar 

  • 10.

    Ludwig, M., Wilmes, P. & Schrader, S. Measuring soil sustainability via soil resilience. Sci. Total Environ. 626, 1484–1493 (2018).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Lal, R. Rights-of-Soil. J. Soil Water Conserv. 74, 81A–86A (2019).

    Article 

    Google Scholar 

  • 12.

    Hillel, D. Introduction to Environmental Soil Physics. (Elsevier, 2003).

  • 13.

    Yoder, D. C. et al. Soil health: meaning, measurement, and value through a critical zone lens. J. Soil Water Conserv. 76, 103–108 (2021).

  • 14.

    Li, J. et al. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biol. Biochem. 106, 18–27 (2017).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Nouri, A., Lee, J., Yin, X., Tyler, D. D. & Saxton, A. M. Thirty-four years of no-tillage and cover crops improve soil quality and increase cotton yield in Alfisols, Southeastern USA. Geoderma 337, 998–1008 (2019).

    Article 

    Google Scholar 

  • 16.

    Lal, R. Degradation and resilience of soils. Philosophical Transactions of the Royal Society of London. Philos. Trans. R. Soc. Lond. Ser. B 352, 997–1010 (1997).

    Article 

    Google Scholar 

  • 17.

    Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol. 25, 2325–2337 (2019).

    Article 

    Google Scholar 

  • 18.

    McLaughlin, B. C. et al. Weather underground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. Glob. Change Biol. 26, 3091–3107 (2020).

    Article 

    Google Scholar 

  • 19.

    Van Kessel, C. et al. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta‐analysis. Glob. Change Biol. 19, 33–44 (2013).

    Article 

    Google Scholar 

  • 20.

    Döring, T. F. et al. Resilience as a universal criterion of health. J. Sci. Food Agric. 95, 455–465 (2015).

    Article 

    Google Scholar 

  • 21.

    Corstanje, R., Deeks, L., Whitmore, A., Gregory, A. & Ritz, K. Probing the basis of soil resilience. Soil Use Manag. 31, 72–81 (2015).

    Article 

    Google Scholar 

  • 22.

    Herrick, J. E. & Wander, M. M. Relationships between soil organic carbon and soil quality in cropped and rangeland soils: the importance of distribution, composition, and soil biological activity. in Soil Processes and the Carbon Cycle. 405–425 (CRC Press, 2018).

  • 23.

    Gaudin, A. C. et al. Increasing crop diversity mitigates weather variations and improves yield stability. PloS ONE 10, e0113261 (2015).

    Article 

    Google Scholar 

  • 24.

    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).

    Article 

    Google Scholar 

  • 25.

    Holt-Giménez, E. Measuring farmers’ agroecological resistance after Hurricane Mitch in Nicaragua: a case study in participatory, sustainable land management impact monitoring. Agric. Ecosyst. Environ. 93, 87–105 (2002).

    Article 

    Google Scholar 

  • 26.

    Slette, I. J. et al. How ecologists define drought, and why we should do better. Glob. Change Biol. 25, 3193–3200 (2019).

    Article 

    Google Scholar 

  • 27.

    Tirivarombo, S., Osupile, D. & Eliasson, P. Drought monitoring and analysis: standardised precipitation evapotranspiration index (SPEI) and standardised precipitation index (SPI). Phys. Chem. Earth Parts A/B/C 106, 1–10 (2018).

    Article 

    Google Scholar 

  • 28.

    Svoboda, M. et al. The drought monitor. Bull. Am. Meteorol. Soc. 83, 1181–1190 (2002).

    Article 

    Google Scholar 

  • 29.

    Gitz, V., Meybeck, A., Lipper, L., Young, C. D. & Braatz, S. Climate change and food security: risks and responses. Food and Agriculture Organization of the United Nations (FAO) Report 110 (2016).

  • 30.

    Walthall, C. L., Anderson, C. J., Baumgard, L. H., Takle, E. & Wright-Morton, L. Climate change and agriculture in the United States: Effects and adaptation. (2013).

  • 31.

    USDA National Agricultural Statistics Service Cropland Data Layer. Published crop-specific data layer. (2019).

  • 32.

    Hake, K. & Grimes, D. in Physiology of cotton 255-264 (Springer, 2010).

  • 33.

    Main, C. L. W288 Cotton Production in Tennessee.  (2012).

  • 34.

    Lal, R. & Shukla, M. K. Principles of soil physics. (CRC Press, 2004).

  • 35.

    Shen, Y., McLaughlin, N., Zhang, X., Xu, M. & Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 8, 1–9 (2018).

    Google Scholar 

  • 36.

    Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Nouri, A. et al. Crop species in no-tillage summer crop rotations affect soil quality and yield in an Alfisol. Geoderma 345, 51–62 (2019).

    Article 

    Google Scholar 

  • 38.

    Singh, S. et al. Soil organic carbon and aggregation in response to thirty-nine years of tillage management in the southeastern US. Soil Tillage Res. 197, 104523 (2020).

    Article 

    Google Scholar 

  • 39.

    Werner, W., Sanderman, J. & Melillo, J. Decreased soil organic matter in a long‐term soil warming experiment lowers soil water holding capacity and affects soil thermal and hydrological buffering. J. Geophys. Res. 125, e2019JG005158 (2020).

    CAS 

    Google Scholar 

  • 40.

    Blanco-Canqui, H., Mikha, M. M., Presley, D. R. & Claassen, M. M. Addition of cover crops enhances no‐till potential for improving soil physical properties. Soil Sci. Soc. Am. J. 75, 1471–1482 (2011).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Jin, V. L. et al. Management controls the net greenhouse gas outcomes of growing bioenergy feedstocks on marginally productive croplands. Sci. Adv. 5, eaav9318 (2019).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Vincent, L., Zhang, X., Mekis, É., Wan, H. & Bush, E. Changes in Canada’s climate: Trends in indices based on daily temperature and precipitation data. Atmos.-Ocean 56, 332–349 (2018).

    Article 

    Google Scholar 

  • 43.

    Houghton, J. T. et al. Climate change 2001: the scientific basis.  (The Press Syndicate of the University of Cambridge, 2001).

  • 44.

    Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 1–8 (2018).

    Article 

    Google Scholar 

  • 45.

    Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).

    Article 

    Google Scholar 

  • 46.

    Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 7, 5875–5895 (2015).

    Article 

    Google Scholar 

  • 47.

    Qin, S. et al. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Sci. Adv. 5, eaau1218 (2019).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Blanco-Canqui, H. & Ruis, S. J. No-tillage and soil physical environment. Geoderma 326, 164–200 (2018).

    Article 

    Google Scholar 

  • 49.

    Himes, F. Nitrogen, sulfur, and phosphorus and the sequestering of carbon. in Soil processes and the carbon cycle. 315–319 (CRC Press, 2018).

  • 50.

    Li, L. & Schaeffer, S. M. Stabilization mechanisms of isotope-labeled carbon substrates in soil under moisture pulses and conservation agricultural management. Geoderma 380, 114677 (2020).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Nouri, A. et al. Management duration controls the synergistic effect of tillage, cover crop, and nitrogen rate on cotton yield and yield stability. Agric. Ecosyst. Environ. 301, 107007 (2020).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Adams, J. Climate indices, an open source Python library providing reference implementations of commonly used climate indices. Climate indices in Python. (2017).

  • 53.

    McKee, T.B., Doesken, N.J. & Kleist, J. The Relation of Drought Frequency and Duration to Time Scales. Proceedings of the 8th Conference on Applied Climatology. 179-184 (1993).

  • 54.

    Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr. Rev. 38, 55–94 (1948).

    Article 

    Google Scholar 

  • 55.

    Palmer, W. C. Meteorological Drought. Vol. 30 (US Department of Commerce, Weather Bureau, 1965).

  • 56.

    Wells, N., Goddard, S. & Hayes, M. J. A self-calibrating Palmer drought severity index. J. Clim. 17, 2335–2351 (2004).

    Article 

    Google Scholar 

  • 57.

    Culman, S. W. et al. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Sci. Soc. Am. J. 76, 494–504 (2012).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Jones, D. & Willett, V. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem. 38, 991–999 (2006).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Kemper, W. & Rosenau, R. Aggregate stability and size distribution. Methods of soil analysis: Part 1 physical and mineralogical. Methods 5, 425–442 (1986).

    Google Scholar 

  • 60.

    Fuchs, B. Using the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). in NDM Center. Nebraska-Lincoln, Caribbean Drought Workshop. 1–24 (2012).

  • 61.

    Friedman, J. H. Multivariate adaptive regression splines. Ann. Stat. 19, 1–67 (1991).

  • 62.

    Racine, J. S. RStudio: a platform-independent IDE for R and Sweave. (JSTOR, 2012).

  • 63.

    Institute, S. SAS 9.4 Output delivery system: User’s Guide. (SAS Institute, 2014).

  • 64.

    Saxton, A. A macro for converting mean separation output to letter groupings in Proc Mixed. Proc. 23rd SAS Users Group International, 22–25 March 1998, Nashville, 1243–1246 (1998).


  • Source: Ecology - nature.com

    Will yield gains be lost to disease?

    Principles, drivers and opportunities of a circular bioeconomy