in

Stochasticity in host-parasitoid models informs mechanisms regulating population dynamics

  • 1.

    Benincà, E., Ballantine, B., Ellner, S.P. & Huisman, J. Species fluctuations sustained by a cyclic succession at the edge of chaos. Proc. Natl. Acad. Sci. 112, 6389–6394 (2015).

  • 2.

    Lande, R. et al. Stochastic Population Dynamics in Ecology and Conservation (Oxford University Press, 2003).

  • 3.

    Bonsall, M. B. & Hastings, A. Demographic and environmental stochasticity in predator-prey metapopulation dynamics. J. Anim. Ecol. 73, 1043–1055 (2004).

    Article 

    Google Scholar 

  • 4.

    Nisbet, R. M. & Gurney, W. Modelling Fluctuating Populations: reprint of first Edition (1982) (Blackburn Press, 2003).

  • 5.

    Hening, A. & Nguyen, D. H. Stochastic Lotka–Volterra food chains. J. Math. Biol. 77(1), 135–163 (2018).

    MathSciNet 
    Article 

    Google Scholar 

  • 6.

    Khasminskii, R. et al. Long term behavior of solutions of the Lotka–Volterra system under small random perturbations. Ann. Appl. Probab. 11(3), 952–963 (2001).

    MathSciNet 
    Article 

    Google Scholar 

  • 7.

    Huang, W., Hauert, C. & Traulsen, A. Stochastic game dynamics under demographic fluctuations. Proc. Natl. Acad. Sci., 112(29), 9064–9069 (2015).

  • 8.

    Suvinthra, M. & Balachandran, K. Large deviations for the stochastic predator-prey model with nonlinear functional response. J. Appl. Probab. 54(2), 507 (2017).

    MathSciNet 
    Article 

    Google Scholar 

  • 9.

    Zou, X. & Wang, K. Optimal harvesting for a stochastic Lotka–Volterra predator-prey system with jumps and nonselective harvesting hypothesis. Optim. Control Appl. Methods 37(4), 641–662 (2016).

    MathSciNet 
    Article 

    Google Scholar 

  • 10.

    Larsen, A. E. Modeling multiple nonconsumptive effects in simple food webs: a modified Lotka–Volterra approach. Behav. Ecol. 23(5), 1115–1125 (2012).

    Article 

    Google Scholar 

  • 11.

    Singh, A. Stochastic dynamics of consumer-resource interactions. bioRxiv (2021).

  • 12.

    Bashkirtseva, I., Ryashko, L. & Tsvetkov, I. Analysis of stochastic phenomena in ricker-type population model with delay. In AIP Conference Proceedings, vol. 1895, p. 050003 (2017).

  • 13.

    Halley, J. M. & Iwasa, Y. Extinction rate of a population under both demographic and environmental stochasticity. Theor. Popul. Biol. 53, 1–15 (1998).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Hassell, M. P. (Oxford University Press, 2000).

  • 15.

    Gurney, W. S. C. & Nisbet, R. M. Ecological Dynamics (Oxford University Press, 1998).

  • 16.

    Murdoch, W. W., Briggs, C. J. & Nisbet, R. M. Consumer-Resouse Dynamics (Princeton University Press, 2003).

  • 17.

    Kakehashi, N., Suzuki, Y. & Iwasa, Y. Niche overlap of parasitoids in host-parasitoid systems: its consequence to single versus multiple introduction controversy in biological control. J. Appl. Ecol. 21, 115–131 (1984).

    Article 

    Google Scholar 

  • 18.

    May, R. M. & Hassell, M. P. The dynamics of multiparasitoid-host interactions. Am. Nat. 117(3), 234–261 (1981).

    MathSciNet 
    Article 

    Google Scholar 

  • 19.

    Hackett-Jones, E., Cobbold, C. & White, A. Coexistence of multiple parasitoids on a single host due to differences in parasitoid phenology. Theor. Ecol. 2(1), 19–31 (2009).

    Article 

    Google Scholar 

  • 20.

    van Velzen, E., Pérez-Vila, S. & Etienne, R. S. The role of within-host competition for coexistence in multiparasitoid-host systems. Am. Nat. 187(1), 48–59 (2016).

    Article 

    Google Scholar 

  • 21.

    Nicholson, A. & Bailey, V. A. The balance of animal populations. Part 1. Proc. Zool. Soc. Lond. 3, 551–598 (1935).

    Article 

    Google Scholar 

  • 22.

    Singh, A., Murdoch, W. W. & Nisbet, R. M. Skewed attacks, stability, and host suppression. Ecology 90(6), 1679–1686 (2009).

    Article 

    Google Scholar 

  • 23.

    Bešo, E., Kalabušić, S., Mujić, N. & Pilav, E. Stability of a certain class of a host-parasitoid models with a spatial refuge effect. J. Biol. Dyn. 14(1), 1–31 (2020).

    MathSciNet 
    Article 

    Google Scholar 

  • 24.

    Taylor, A. D. Heterogeneity in host-parasitoid interactions: ‘aggregation of risk’ and the (cv^2>1) rule. Trends Ecol. Evolu. 8, 400–405 (1993).

  • 25.

    Hassell, M. P., May, R. M., Pacala, S. W. & Chesson, P. L. The persistence of host-parasitoid associations in patchy environments. I. A general criterion. Am. Nat. 138, 568–583 (1991).

    Article 

    Google Scholar 

  • 26.

    Pacala, S. W. & Hassell, M. P. The persistence of host- parasitoid associations in patchy environments. II. Evaluation of field data. Am. Nat. 138, 584–605 (1991).

    Article 

    Google Scholar 

  • 27.

    Bernstein, C. Density dependence and the stability of host-parasitoid systems. Oikos 47, 176–180 (1986).

    Article 

    Google Scholar 

  • 28.

    Free, C., Beddington, J. & Lawton, J. On the inadequacy of simple models of mutual interference for parasitism and predation. J. Anim. Ecol. 46, 543–554 (1977).

    Article 

    Google Scholar 

  • 29.

    Rogers, D. & Hassell, M. General models for insect parasite and predator searching behaviour: interference. J. Anim. Ecol. 43, 239–253 (1974).

    Article 

    Google Scholar 

  • 30.

    Reeve, J. D., Cronin, J. T. & Strong, D. R. Parasitoid aggregation and the stabilization of a salt marsh host- parasitoid system. Ecology 75, 288–295 (1994).

    Article 

    Google Scholar 

  • 31.

    Rohani, P., Godfray, H. C. J. & Hassell, M. P. Aggregation and the dynamics of host-parasitoid systems: A discrete-generation model with within-generation redistribution. Am. Nat. 144(3), 491–509 (1994).

    Article 

    Google Scholar 

  • 32.

    May, R. M. Host-parasitoid systems in patchy environments: A phenomenological model. J. Anim. Ecol. 47, 833–844 (1978).

    Article 

    Google Scholar 

  • 33.

    Singh, A. & Nisbet, R. M. Semi-discrete host-parasitoid models. J. Theor. Biol. 247(4), 733–742 (2007).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 34.

    Singh, A. Population dynamics of multi-host communities attacked by a common parasitoid, bioRxiv (2021).

  • 35.

    Singh, A. & Emerick, B. Hybrid systems framework for modeling host-parasitoid population dynamics. In 2020 59th IEEE Conference on Decision and Control (CDC), 4628–4633 (2020).

  • 36.

    Lane, S. D., St, C. M. Mary, & Getz, W. M. Coexistence of attack-limited parasitoids sequentially exploiting the same resource and its implications for biological control. Ann. Zool. Fenn. 43, 17–34 (2006).

    Google Scholar 

  • 37.

    Pedersen, B. S. & Mills, N. J. Single vs. multiple introduction in biological control: the roles of parasitoid efficiency, antagonism and niche overlap. J. Appl. Ecol. 41(5), 973–984 (2004).

    Article 

    Google Scholar 

  • 38.

    Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion; an underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).

    Article 

    Google Scholar 

  • 39.

    Jervis, M. A., Hawkin, B. A. & Kidd, N. A. C. The usefulness of destructive host-feeding parasitoids in classical biological control: Theory and observation conflict. Ecol. Entomol. 21(1), 41–46 (1996).

    Article 

    Google Scholar 

  • 40.

    Okuyama, T. Density-dependent distribution of parasitism risk among underground hosts. Bull. Entomol. Res. 109(4), 528–533 (2019).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Cobbold, C. A., Roland, J. & Lewis, M. A. The impact of parasitoid emergence time on host-parastioid population dynamics. Theor. Popul. Biol. 75(2), 201–215 (2009).

    Article 

    Google Scholar 

  • 42.

    Liere, H., Jackson, D. & Vandermeer, J. Ecological complexity in a coffee agroecosystem: Spatial heterogeneity, popoulation persistence and biological control. PLoS One 7(9), e45508 (2012).

  • 43.

    Zoroa, N., Lesigne, E., Fernandez-Saez, M.J., Zoroa, P. & Casas, J. The coupon collector urn model with unequal probabilities in ecology and evolution, J. R. Soc. Interface 14, 20160643 (2017).

  • 44.

    Singh, A. & Emerick, B. Generalized stability conditions for host-parasitoid population dynamics: Implications for biological control. Ecol. Model. 456, 109656 (2021).

  • 45.

    Ledder, G. Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems (Springer Science & Business Media, 2013).

  • 46.

    Elaydi, S. An Introduction to Difference Equations (Springer, 1996).

  • 47.

    Gajic, Z. & Qureshi, M. T. J. Lyapunov matrix equation in system stability and control. (Courier Corporation, 2008).

  • 48.

    Singh, A. & Nisbet, R. M. Variation in risk in single-species discrete-time models. Math. Biosci. Eng. 5, 859–875 (2008).

    MathSciNet 
    Article 

    Google Scholar 

  • 49.

    Emerick, B. K. & Singh, A. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models. Math. Biosci. 272, 54–63 (2016).

    MathSciNet 
    Article 

    Google Scholar 

  • 50.

    Pachepsky, E., Nisbet, R. M. & Murdoch, W. W. Between discrete and continuous: Consumer-resource dynamics with synchronized reproduction. Ecology 89(1), 280–288 (2007).

    Article 

    Google Scholar 

  • 51.

    Emerick, B. K., Singh, A & Chhetri, S. R. Global redistribution and local migration in semi-discrete host-parasitoid population dynamic models. Math. Biosci. 327, 108409 (2020).

  • 52.

    Rogers, D. J. Random searching and incest population models. J. Anim. Ecol. 41, 369–383 (1972).

    Article 

    Google Scholar 

  • 53.

    Hassell, M. P. & Comins, H. N. Sigmoid functional responses and population stability. Theor. Popul. Biol. 14, 62–66 (1978).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Fernández-arhex, V. & Corley, J. C. The functional response of parasitoids and its implications for biological control. Biocontrol Sci. Technol. 13(4), 403–413 (2003).

    Article 

    Google Scholar 

  • 55.

    Okuyama, T. Dilution effects enhance variation in parasitism risk among hosts and stabilize host-parasitoid population dynamics. Ecol. Model. 441, 109425 (2021).

  • Quantitative mapping and spectroscopic characterization of particulate organic matter fractions in soil profiles with imaging VisNIR spectroscopy

    Species diversity and food web structure jointly shape natural biological control in agricultural landscapes