in

Joint temporal trends in river thermal and hydrological conditions can threaten the downstream migration of the critically endangered European eel

  • 1.

    Chapman, B. B. et al. Partial migration in fishes: Causes and consequences. J. Fish Biol. 81, 456–478 (2012).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Araújo, C. V. M. et al. Habitat fragmentation caused by contaminants: Atrazine as a chemical barrier isolating fish populations. Chemosphere 193, 24–31 (2018).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Flitcroft, R. L., Arismendi, I. & Santelmann, M. V. A review of habitat connectivity research for pacific salmon in marine, estuary, and freshwater environments. J. Am. Water Resour. Assoc. 55, 430–441 (2019).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Maire, A., Thierry, E., Viechtbauer, W. & Daufresne, M. Poleward shift in large-river fish communities detected with a novel meta-analysis framework. Freshw. Biol. 64, 1143–1156 (2019).

    Article 

    Google Scholar 

  • 5.

    van Vliet, M. T. H. et al. Coupled daily streamflow and water temperature modelling in large river basins. Hydrol. Earth Syst. Sci. 16, 4303–4321 (2012).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Palmer, M. A. et al. Climate change and the world’s river basins: Anticipating management options. Front. Ecol. Environ. 6, 81–89 (2008).

    Article 

    Google Scholar 

  • 7.

    Jonsson, B. & Jonsson, N. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J. Fish Biol. 75, 2381–2447 (2009).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Arevalo, E. et al. An innovative bivariate approach to detect joint temporal trends in environmental conditions: Application to large French rivers and diadromous fish. Sci. Total Environ. 748, 141260 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Hughes, L. Biological consequences of global warming: Is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Tesch, F.-W. & Bartsch, P. The Eel (Blackwell Science, 2003).

    Book 

    Google Scholar 

  • 11.

    Durif, C. M. F. et al. Age of European silver eels during a period of declining abundance in Norway. Ecol. Evol. 10, 4801–4815 (2020).

    Article 

    Google Scholar 

  • 12.

    Poole, R. W. & Reynolds, J. D. Growth rate and age at migration of Anguilla anguilla. J. Fish Biol. 48, 633–642 (1996).

    Google Scholar 

  • 13.

    Durif, C. M. F., Travade, F., Rives, J., Elie, P. & Gosset, C. Relationship between locomotor activity, environmental factors, and timing of the spawning migration in the European eel Anguilla anguilla. Aquat. Living Resour. 21, 163–170 (2008).

    Article 

    Google Scholar 

  • 14.

    Fontaine, M. Physiological mechanisms in the migration of marine and amphihaline fish. Adv. Mar. Biol. 13, 241–355 (1975).

    Article 

    Google Scholar 

  • 15.

    Bruijs, M. C. M. & Durif, C. M. F. Silver Eel migration and behaviour. Spawning Migr. Eur. Eel https://doi.org/10.1007/978-1-4020-9095-0_4 (2009).

    Article 

    Google Scholar 

  • 16.

    ICES. Workshop on the temporal migration patterns of European eel (WKEELMIGRATION). vol. 2 http://doi.org/https://doi.org/10.17895/ices.pub.5993 (2020).

  • 17.

    Vøllestad, L. A., Jonsson, B., Hvidsten, N. A. & Naesje, T. F. Experimental test of environmental factors influencing the seaward migration of European silver eels. J. Fish Biol. 45, 641–651 (1994).

    Article 

    Google Scholar 

  • 18.

    Sandlund, O. T. et al. Timing and pattern of annual silver eel migration in two European watersheds are determined by similar cues. Ecol. Evol. 7, 5956–5966 (2017).

    Article 

    Google Scholar 

  • 19.

    Drouineau, H. et al. Freshwater eels: A symbol of the effects of global change. Fish Fish. 19, 903–930 (2018).

    Article 

    Google Scholar 

  • 20.

    Pike, C., Crook, V., & Gollock, M. Anguilla anguilla. The IUCN Red List of Treatened Species 2020. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2020-539 2.RLTS.T60344A152845178.en (2020).

  • 21.

    Dankers, R. & Feyen, L. Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations. J. Geophys. Res. Atmos. 113, 1–17 (2008).

    Article 

    Google Scholar 

  • 22.

    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Article 

    Google Scholar 

  • 23.

    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Chang. 4, 17–22 (2014).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Durif, C., Elie, P., Gosset, C. & Rives, J. Behavioral Study of Downstream Migrating Eels by Radio-telemetry at a Small Hydroelectric Power Plant. Am. Fish. Soc. Symp. 1–14 (2002).

  • 25.

    Flitcroft, R. L. et al. Linking hydroclimate to fish phenology and habitat use with ichthyographs. PLoS ONE 11, 1–12 (2016).

    Article 

    Google Scholar 

  • 26.

    Bossard, M., Feranec, J. & Othael, J. CORINE Land Cover Technical Guide – Addendum 2000. European Environment Agency. Technical Report. Available online at: http://www.eea.europa.eu/publications/tech40add. (2000).

  • 27.

    de Eyto, E. et al. Characterisation of salmonid food webs in the rivers and lakes of an Irish peatland ecosystem. Biol. Environ. Proc. R. Irish Acad. 120, 1–17 (2020).

    Google Scholar 

  • 28.

    Poole, W. R., Reynolds, J. D. & Moriarty, C. Observations on the Silver Eel Migrations of the Burrishoole River System, Ireland, 1959 to 1988. Int. Rev. der gesamten Hydrobiol. und Hydrogr 75, 807–815 (1990).

    Article 

    Google Scholar 

  • 29.

    Poole, W. R. et al. Long-term variation in numbers and biomass of silver eels being produced in two European river systems. ICES J. Mar. Sci. 75, 1627–1637 (2018).

    Article 

    Google Scholar 

  • 30.

    Chacón, J. E. & Duong, T. Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices. TEST 19, 375–398 (2010).

    MathSciNet 
    Article 

    Google Scholar 

  • 31.

    Lechowicz, M. The sampling characteristics of electivity indices. Oecologia 52, 22–30 (1982).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Ivlev, V. S. Experimental ecology of the feeding fishes (Yale University Press, 1961).

    Google Scholar 

  • 33.

    R Development Core Team. R: A Language and Environment for Statistical Computing. (2020).

  • 34.

    Drouineau, H., Arevalo, E., Lassalle, G., Tétard, S. & Maire, A. chocR: Exploring the temporal CHange of OCcurence of events in multivariate time series. R package version 0.0.0.9000. (2020).

  • 35.

    Hutchinson, G. E. Concluding Remarks. in Cold Spring Harbor Symposia on Quantitative Biology 415–442 (1957).

  • 36.

    Schneider, C., Laizé, C. L. R., Acreman, M. C. & Flörke, M. How will climate change modify river flow regimes in Europe?. Hydrol. Earth Syst. Sci. 17, 325–339 (2013).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Hannaford, J., Laize, C. L. R. & Marsh, T. J. An assessment of runoff trends in undisturbed catchments in the Celtic regions of North West Europe. IAHS-AISH Publ. 78–85 (2007).

  • 38.

    Engen-Skaugen, T. Refinement of dynamically downscaled precipitation and temperature scenarios. Clim. Change 84, 365–382 (2007).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Lawrence, D. & Hisdal, H. Hydrological projections for floods in Norway under a future climate. NVE Report http://webby.nve.no/publikasjoner/report/2011/report2011_05.pdf (2011).

  • 40.

    Woolway, R. I. et al. Substantial increase in minimum lake surface temperatures under climate change. Clim. Change 155, 81–94 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Fealy, R. et al. RESCALE : Review and Simulate Climate and Catchment Responses at Burrishoole. Review Literature and Arts of the Americas (2014).

  • 42.

    Als, T. D. et al. All roads lead to home: Panmixia of European eel in the Sargasso Sea. Mol. Ecol. 20, 1333–1346 (2011).

    Article 

    Google Scholar 

  • 43.

    Acou, A., Laffaille, P., Legault, A. & Feunteun, E. Migration pattern of silver eel (Anguilla anguilla, L.) in an obstructed river system. Ecol. Freshw. Fish 17, 432–442 (2008).

    Article 

    Google Scholar 

  • 44.

    Fernandes, W. P. A. et al. Does relatedness influence migratory timing and behaviour in Atlantic salmon smolts?. Anim. Behav. 106, 191–199 (2015).

    Article 

    Google Scholar 

  • 45.

    Vøllestad, L. A. et al. Environmental Factors Regulating the Seaward Migration of European Silver Eels (Anguilla anguilla). Can. J. Fish. Aquat. Sci. 43, 1909–1916 (1986).

    Article 

    Google Scholar 

  • 46.

    Daverat, F. et al. One century of eel growth: Changes and implications. Ecol. Freshw. Fish 21, 325–336 (2012).

    Article 

    Google Scholar 

  • 47.

    Vøllestad, L. A. Geographic variation in age and length at metamorphosis of maturing European eel: Environmental effects and phenotypic plasticity. J. Anim. Ecol. 61, 41 (1992).

    Article 

    Google Scholar 

  • 48.

    Vaughan, L. et al. Growth rates in a European eel Anguilla anguilla (L., 1758) population show a complex relationship with temperature over a seven-decade otolith biochronology. ICES J. Mar. Sci. (2021).

  • 49.

    Lassalle, G. & Rochard, E. Impact of twenty-first century climate change on diadromous fish spread over Europe, North Africa and the Middle East. Glob. Chang. Biol. 15, 1072–1089 (2009).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Monteiro, R. M. et al. Migration and escapement of silver eel males, Anguilla anguilla, from a southwestern European river. Ecol. Freshw. Fish https://doi.org/10.1111/eff.12545 (2020).

    Article 

    Google Scholar 

  • 51.

    Mateo, M. et al. Cause or consequence? Exploring the role of phenotypic plasticity and genetic polymorphism in the emergence of phenotypic spatial patterns of the European eel. Can. J. Fish. Aquat. Sci. 74, 987–999 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Correction: Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus

    A peculiar state of matter in layers of semiconductors