in

Soil organic matter is essential for colony growth in subterranean termites

  • 1.

    Fagan, W. F. et al. Nitrogen in insects: Implications for trophic complexity and species diversification. Am. Nat. 160, 784–802 (2002).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Kuhlmann, F. et al. Exploring the nitrogen ingestion of aphids—A new method using electrical penetration graph and (15)N labelling. PLoS ONE 8, e83085. https://doi.org/10.1371/journal.pone.0083085 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Nalepa, C. A. Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323–335 (2015).

    Article 

    Google Scholar 

  • 4.

    Tong, R. L., Aguilera-Olivares, D., Chouvenc, T. & Su, N. Y. Nitrogen content of the exuviae of Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae). Heliyon 7, e06697. https://doi.org/10.1016/j.heliyon.2021.e06697 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Nalepa, C. A. Altricial development in subsocial cockroach ancestors: Foundation for the evolution of phenotypic plasticity in termites. Evol. Dev. 12, 95–105 (2011).

    Article 

    Google Scholar 

  • 6.

    Abe, T. Evolution of life types in termites. In Evolution and coadaptation in biotic Communities (eds. Kawano, S., Connell, J. H. & Hidaka, T.) 126–148, (University of Tokyo Press, 1987).

  • 7.

    Bourguignon, T. et al. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32, 406–421 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Bucek, A. et al. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol. 29, 3728–3734 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Breznak, J. A. Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites. In Termites: Evolution, Sociality, Symbioses, Ecology (eds Abe, T. et al.) 209–231 (Springer, 2000).

    Chapter 

    Google Scholar 

  • 10.

    Potrikus, C. J. & Breznak, J. A. Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation. Proc. Natl. Acad. Sci. USA 78, 4601–4605 (1981).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Bao, W., O’Malley, D. M. & Sederoff, R. R. Wood contains a cell-wall structural protein. Proc. Nat. Acad. Sci. USA 89, 6604–6608 (1992).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Ji, R. & Brune, A. Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochem. 78, 267–283 (2006).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Ngugi, D. K., Ji, R. & Brune, A. Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: A 15 N-based approach. Biogeochem. 103, 355–369 (2011).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Chouvenc, T., Šobotník, J., Engel, M. S. & Bourguignon, T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci. 78, 2749–2769 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Engel, M. S., Grimaldi, D. A. & Krishna, K. Termites (Isoptera): Their phylogeny, classification, and rise to ecological dominance. Am. Mus. Nov. 3650, 1–27 (2009).

    Google Scholar 

  • 16.

    Bignell, D. E. The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In The mechanistic benefits of microbial symbionts (ed. Hurst C. J.) 121–172 (Springer, Cham 2016).

  • 17.

    Nalepa, C. A. Body size and termite evolution. Evol. Biol. 38, 243–257 (2011).

    Article 

    Google Scholar 

  • 18.

    Breznak, J. A., Brill, W. J., Mertins, J. W. & Coppel, H. C. Nitrogen fixation in termites. Nature 244, 577–580 (1973).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Noda, S., Ohkuma, M. & Kudo, T. Nitrogen fixation genes expressed in the symbiotic microbial community in the gut of the termite Coptotermes formosanus. Microbes Environ. 17, 139–143 (2002).

    Article 

    Google Scholar 

  • 20.

    Benemann, J. R. Nitrogen fixation in termites. Science 181, 164–165 (1973).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Waller, D. A., Breitenbeck, G. A. & La Fage, J. P. Variation in acetylene reduction by Coptotermes formosanus (Isoptera: Rhinotermitidae) related to colony source and termite size. Sociobiology 16, 191–196 (1989).

    Google Scholar 

  • 22.

    Pandey, S., Waller, D. A. & Gordon, A. S. Variation in acetylene-reduction (nitrogen-fixation) rates in Reticulitermes spp. (Isoptera: Rhinotermitidae). Virginia J. Sci. 43, 333–338 (1992).

  • 23.

    Curtis, A. D. & Waller, D. A. Changes in nitrogen fixation rates in termites (Isoptera: Rhinotermitidae) maintained in the laboratory. Ann. Entomol. Soc. 88, 764–767 (1995).

    Article 

    Google Scholar 

  • 24.

    Golichenkov, M. V., Kostina, N. V., Ul’yanova, T. A., Kuznetsova, T. A. & Umarov, M. M. Diazotrophs in the digestive tract of termite Neotermes castaneus. Biol. Bull. 33, 508–512 (2006).

  • 25.

    Dilworth, M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim. Biophys. Acta General Subjects 127, 285–294 (1966).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Bentley, B. L. Nitrogen fixation in termites: Fate of newly fixed nitrogen. J. Insect Physiol. 30, 653–655 (1984).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for delta(13)C analysis of diet. Oecologia 57, 32–37 (1983).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Dabundo, R. et al. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS One. https://doi.org/10.1371/journal.pone.0110335 (2014).

  • 29.

    Tayasu, I. Use of carbon and nitrogen isotope ratios in termite research. Ecol. Res. 13, 377–387 (1998).

    Article 

    Google Scholar 

  • 30.

    Bar-Shmuel, N., Behar, A. & Segoli, M. What do we know about biological nitrogen fixation in insects? Evidence and implications for the insect and the ecosystem. Insect Sci. 27, 392–403 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Du, H., Chouvenc, T., Osbrink, W. L. A. & Su, N.-Y. Social interactions in the central nest of Coptotermes formosanus juvenile colonies. Insectes Soc. 63, 279–290. https://doi.org/10.1007/s00040-016-0464-4 (2016).

    Article 

    Google Scholar 

  • 32.

    Josens, G. & Makatia Wango, S. P. Niche differentiation between two sympatric Cubitermes Species (Isoptera, Termitidae, Cubitermitinae) revealed by stable C and N isotopes. Insects 10, 38. https://doi.org/10.3390/insects10020038 (2019).

    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Burris, R. H. Nitrogenases. J. Biol. Chem. 266, 9339–9342 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Nutting, W. L. Flight and colony foundation. In Biology of Termites Vol. 1 (eds Krishna, K & Weesner, F.) 233–282 (Academic Press, 1969).

  • 35.

    Chouvenc, T. & Su, N. Y. Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insectes Soc. 61, 171–182 (2014).

    Article 

    Google Scholar 

  • 36.

    Su, N. Y., Ban, P. M. & Scheffrahn, R. H. Foraging populations and territories of the eastern subterranean termite (Isoptera: Rhinotermitidae) in Southeastern Florida. Environ. Entomol. 22, 1113–1117 (1993).

    Article 

    Google Scholar 

  • 37.

    Su, N. Y., Osbrink, W. L. A., Kakkar, G., Mullins, A. & Chouvenc, T. Foraging distance and population size of juvenile colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in laboratory extended arenas. J. Econ. Entomol. 110, 1728–1735 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    Rust, M. K. & Su, N. Y. Managing social insects of urban importance. Annu. Rev. Entomol. 57, 355–375 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Krishna, K., Grimaldi, D. A., Krishna, V. & Engel, M. S. Treatise on the Isoptera of the world. Bull. Am. Mus. Nat. Hist. 377, 1–2704 (2013).

    Article 

    Google Scholar 

  • 40.

    Bourguignon, T. et al. Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc. Roy. Soc. B: Biol. Sci. 283, 20160179. https://doi.org/10.1098/rspb.2016.0179 (2016).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Cleveland, L. R. The ability of termites to live perhaps indefinitely on a diet of pure cellulose. Biol. Bull. 48, 289–293 (1925).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Roessler, E. S. A Preliminary study of the nitrogen needs of growing Termopsis. Univ. Calif. Publ. Zool. 36, 357–368 (1932).

    CAS 

    Google Scholar 

  • 43.

    Hendee, E. C. The role of fungi in the diet of the common damp-wood termite Zootermopsis angusticolis. Hilgardia 9, 499–524 (1935).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Hungate, R. E. Experiments on the nitrogen economy of termites. Ann. Entomol. Soc. Am. 34, 467–489 (1941).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Mullins, A. J. & Su, N. Y. Parental nitrogen transfer and apparent absence of N2 fixation during colony foundation in Coptotermes formosanus Shiraki. Insects 9, 37. https://doi.org/10.3390/insects9020037 (2018).

    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Prestwich, G. D., Bentley, B. L. & Carpenter, E. J. Nitrogen sources for neotropical nasute termites: Fixation and selective foraging. Oecologia 46, 397–401 (1980).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Waidele, L., Korb, J., Voolstra, C.R., Dedeine, F. & Staubach, F. Ecological specificity of the metagenome in a set of lower termite species supports contribution of the microbiome to adaptation of the host. Anim. Microbio. 1, 13. https://doi.org/10.1186/s42523-019-0014-2 (2019).

  • 48.

    Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects. (Princeton University Press, Princeton, 1978).

  • 49.

    Janzow, M. P. & Judd, T. M. The termite Reticulitermes flavipes (Rhinotermitidae: Isoptera) can acquire micronutrients from soil. Environ. Entomol. 44, 814–820 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Noda, S., Ohkuma, M. & Kudo, T. Nitrogen fixation genes expressed in the symbiotic microbial community in the gut of the termite Coptotermes formosanus. Microb. Environ. 17, 139–143 (2002).

    Article 

    Google Scholar 

  • 51.

    Desai, M. S. & Brune, A. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J. 6, 1302–1313 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Seefeldt, L. C., Hoffman, B. M. & Dean, D. R. Mechanism of Mo-dependent nitrogenase. Annu. Rev. biochem. 78, 701–722 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Yamada, A., Inoue, T., Noda, S., Hongoh, Y. & Ohkuma, M. Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol. Ecol. 16, 3768–3777 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Thanganathan, S. & Hasan, K. Diversity of nitrogen fixing bacteria associated with various termite species. Pertanika J. Tropic. Agri. Sci. 41, 925–940 (2018).

    Google Scholar 

  • 56.

    Mullins, A. J. et al. Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 108, 707–719 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 57.

    Mullins, D. E. & Cochran, D. G. Nitrogen metabolism in the American cockroach—II. An examination of negative nitrogen balance with respect to mobilization of uric acid stores. Comp. Biochem. Physiol. A Physiol. 50, 501–510 (1975).

  • 58.

    Waller, D. A. & La Fage, j. P. Seasonal patterns in foraging groups of Coptotermes formosanus (Rhinotermitidae). Sociobiology 13, 173–181 (1987).

  • 59.

    Waller, D. A. & La Fage, J. P. Size variation in Coptotermes formosanus Shiraki (Rhinotermitidae): Consequences of host use. Am. Midl. Nat. 119, 436–440 (1988).

    Article 

    Google Scholar 

  • 60.

    Su, N.-Y. & La Fage, J. P. Forager proportion and caste composition of colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) restricted to cypress trees in the Calcasieu River, Lake Charles, Louisiana. Sociobiology 33, 185–193 (1999).

    Google Scholar 

  • 61.

    Osbrink, W. L. A., Cornelius, M. L. & Showler, A. T. Bionomics and Formation of “bonsai” colonies with long-term rearing of Coptotermes formosanus (Isoptera: Rhinotermitidae). J. Econ. Entomol. 109, 770–778 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Hochmair, H. H. & Scheffrahn, R. H. Spatial association of marine dockage with land-borne infestations of invasive termites (Isoptera: Rhinotermitidae: Coptotermes) in urban South Florida. J. Econ. Entomol. 103, 1338–1346 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 63.

    Scheffrahn, R. H. & Crowe, W. Ship-borne termite (Isoptera) border interceptions in Australia and onboard infestations in Florida, 1986–2009. Florida Entomol. 94, 57–63 (2011).

    Article 

    Google Scholar 

  • 64.

    Evans, T. A., Forschler, B. T. & Grace, J. K. Biology of invasive termites: A worldwide review. Annu. Rev. Entomol. 58, 455–474 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Blumenfeld, A. J. et al. Bridgehead effect and multiple introductions shape the global invasion history of a termite. Comm. Biol. 4, 196. https://doi.org/10.1038/s42003-021-01725-x (2021).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Evans, T. A. Predicting ecological impacts of invasive termites. Curr. Op. Insect Sci. 46, 88–94 (2021).

    Article 

    Google Scholar 

  • 67.

    Ayayee, P. A., Jones, S. C. & Sabree, Z. L. Can 13C stable isotope analysis uncover essential amino acid provisioning by termite-associated gut microbes?. PeerJ 3, e1218. https://doi.org/10.7717/peerj.1218 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow?. PLoS Biol. 13, e1002311. https://doi.org/10.1371/journal.pbio.1002311 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Bennett, G. M. & Moran, N. A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. USA 112, 10169–10176 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Nat. Acad. Sci. USA 108, 10800–10807 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Peterson B. F. & Scharf M. E. Metatranscriptomic techniques for identifying cellulases in termites and their symbionts. In Cellulases. Methods in Molecular Biology, vol 1796 (ed. Lübeck, M.) 85–101 (Humana Press, New York, NY 2018).

  • 72.

    Gaby, J. C. & Buckley, D. H. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE 7, e42149. https://doi.org/10.1371/journal.pone.0042149 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Poly, F., Ranjard, L., Nazaret, S., Gourbiere, F. & Monrozier, L. J. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. App. Environ. Microbiol. 67, 2255–2262 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 74.

    Rocha, D. J., Santos, C. S. & Pacheco, L. G. Bacterial reference genes for gene expression studies by RT-qPCR: Survey and analysis. Antonie Van Leeuwenhoek 108, 685–693 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Galisa, P. S. et al. Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR. J. Microbiol. Methods 91, 1–7 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Mignard, S. & Flandrois, J. P. Identification of Mycobacterium using the EF-Tu encoding (tuf) gene and the tmRNA encoding (ssrA) gene. J. Med. Microbiol. 56, 1033–1041 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Global potential for harvesting drinking water from air using solar energy

    Post-fire insect fauna explored by crown fermental traps in forests of the European Russia