in

Local adaptations of Mediterranean sheep and goats through an integrative approach

  • 1.

    Vigne, J.-D. Early domestication and farming: What should we know or do for a better understanding?. Anthropozoologica 50(2), 123–150. https://doi.org/10.5252/az2015n2a5 (2015).

    Article 

    Google Scholar 

  • 2.

    Zeder, M. A. Animal domestication in the Zagros: An update and directions for future research. MOM Édit. 49(1), 243–277 (2008).

    Google Scholar 

  • 3.

    Sponenberg, D. P. & Bixby, D. E. Managing Breeds for a Secure Future: Strategies for Breeders and Breed Associations (ALBC, 2007).

    Google Scholar 

  • 4.

    Taberlet, P. et al. Are cattle, sheep, and goats endangered species?. Mol. Ecol. 17(1), 275–284. https://doi.org/10.1111/j.1365-294X.2007.03475.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Berihulay, H., Abied, A., He, X., Jiang, L. & Ma, Y. Adaptation mechanisms of small ruminants to environmental heat stress. Anim. Open Access J. MDPI 9(3), 75. https://doi.org/10.3390/ani9030075 (2019).

    Article 

    Google Scholar 

  • 6.

    Leroy, G., Baumung, R., Boettcher, P., Scherf, B. & Hoffmann, I. Review: Sustainability of crossbreeding in developing countries; definitely not like crossing a meadow…. Animal 10(2), 262–273. https://doi.org/10.1017/S175173111500213X (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Edea, Z., Dadi, H., Dessie, T. & Kim, K.-S. Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes Genomics 41(8), 973–981. https://doi.org/10.1007/s13258-019-00820-y (2019).

    Article 
    PubMed 

    Google Scholar 

  • 8.

    Wei, C. et al. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci. Rep. 6(1), 26770. https://doi.org/10.1038/srep26770 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Yang, J. et al. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol. Biol. Evol. 33(10), 2576–2592. https://doi.org/10.1093/molbev/msw129 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Kim, E. S. et al. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 116(3), 255–264. https://doi.org/10.1038/hdy.2015.94 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Ciani, E. et al. On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools. Genet. Sel. Evol. GSE 52, 1–14. https://doi.org/10.1186/s12711-020-00545-7 (2020).

    Article 

    Google Scholar 

  • 12.

    Colli, L. et al. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genet. Sel. Evol. GSE 50, 1–20. https://doi.org/10.1186/s12711-018-0422-x (2018).

    Article 

    Google Scholar 

  • 13.

    Kijas, J. W. et al. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS ONE 4(3), e4668. https://doi.org/10.1371/journal.pone.0004668 (2009).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Brisebarre, A. Races ovines, systèmes d’élevage et représentations des éleveurs. in Développement rural, environnement et enjeux territoriaux. Regards croisés Oriental marocain et Sud-Est tunisien (dir. Bonte, P., Elloumi, M., Guillaume, H. & Mahdi, M.) 63–78 (Cérès Ed., 2009).

  • 15.

    Hall, S. J. G. Livestock biodiversity as interface between people, landscapes and nature. People Nat. 1(3), 284–290. https://doi.org/10.1002/pan3.23 (2019).

    Article 

    Google Scholar 

  • 16.

    Caballero, R. et al. Grazing Systems and Biodiversity in Mediterranean Areas: Spain, Italy and Greece (Pastos, 2011).

    Google Scholar 

  • 17.

    Collantes, F. The demise of European Mountain Pastoralism: Spain 1500–2000. Nomadic People 13(2), 124–145 (2009).

    Article 

    Google Scholar 

  • 18.

    Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: An R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17(1), 67–77. https://doi.org/10.1111/1755-0998.12592 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30(7), 1687–1699. https://doi.org/10.1093/molbev/mst063 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture, edited by B. Rischkowsky & D. Pilling. Rome. (2007).

  • 21.

    François, O. Running Structure-Like Population Genetic Analyses with R. R Tutorials in Population Genetics 1–9 (U. Grenoble-Alpes, 2016).

    Google Scholar 

  • 22.

    Dalongeville, A., Benestan, L., Mouillot, D., Lobreaux, S. & Manel, S. Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics 19, 1–13. https://doi.org/10.1186/s12864-018-4579-z (2018).

    CAS 
    Article 

    Google Scholar 

  • 23.

    De Kort, H., Vandepitte, K., Mergeay, J., Mijnsbrugge, K. V. & Honnay, O. The population genomic signature of environmental selection in the widespread insect-pollinated tree species Frangula alnus at different geographical scales. Heredity 115(5), 415–425. https://doi.org/10.1038/hdy.2015.41 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Capblancq, T., Luu, K., Blum, M. G. B. & Bazin, E. Evaluation of redundancy analysis to identify signatures of local adaptation. Mol. Ecol. Resour. 18(6), 1223–1233. https://doi.org/10.1111/1755-0998.12906 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Bertolini, F. et al. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genet. Sel. Evol. 50(1), 57. https://doi.org/10.1186/s12711-018-0421-y (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Fariello, M.-I. et al. Selection signatures in worldwide sheep populations. PLoS ONE 9(8), e103813. https://doi.org/10.1371/journal.pone.0103813 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Manunza, A. et al. Population structure of eleven Spanish ovine breeds and detection of selective sweeps with BayeScan and hapFLK. Sci. Rep. 6(1), 1–10. https://doi.org/10.1038/srep27296 (2016).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Oget, C., Servin, B. & Palhière, I. Genetic diversity analysis of French goat populations reveals selective sweeps involved in their differentiation. Anim. Genet. 50(1), 54–63. https://doi.org/10.1111/age.12752 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Rochus, C. M. et al. Revealing the selection history of adaptive loci using genome-wide scans for selection: An example from domestic sheep. BMC Genomics 19(1), 71. https://doi.org/10.1186/s12864-018-4447-x (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Ruiz-Larrañaga, O. et al. Genomic selection signatures in sheep from the Western Pyrenees. Genet. Sel. Evol. GSE 50, 1–12. https://doi.org/10.1186/s12711-018-0378-x (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Wang, Q., Wang, D., Yan, G., Sun, L. & Tang, C. TRPC6 is required for hypoxia-induced basal intracellular calcium concentration elevation, and for the proliferation and migration of rat distal pulmonary venous smooth muscle cells. Mol. Med. Rep. 13(2), 1577–1585. https://doi.org/10.3892/mmr.2015.4750 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Wang, X. et al. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci. Rep. 6, 38932. https://doi.org/10.1038/srep38932 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Graae, B. et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19. https://doi.org/10.1111/j.1600-0706.2011.19694.x (2011).

    Article 

    Google Scholar 

  • 34.

    Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24(17), 4348–4370. https://doi.org/10.1111/mec.13322 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 35.

    Qi, X. et al. The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation. Genome Biol. Evol. 11(1), 72–85. https://doi.org/10.1093/gbe/evy264 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Yang, F., Wang, Q., Wang, M., He, K. & Pan, Y. Associations between gene polymorphisms in two crucial metabolic pathways and growth traits in pigs. Chin. Sci. Bull. 57(21), 2733–2740. https://doi.org/10.1007/s11434-012-5328-3 (2012).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Schmidt, H. et al. Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax—A liver transcriptomics approach. Sci. Rep. https://doi.org/10.1038/s41598-017-13905-z (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Tian, R. et al. Adaptive evolution of energy metabolism-related genes in hypoxia-tolerant mammals. Front. Genet. 8, 205. https://doi.org/10.3389/fgene.2017.00205 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Cheng, A. H. et al. SOX2-dependent transcription in clock neurons promotes the robustness of the central circadian pacemaker. Cell Rep. 26(12), 3191-3202.e8. https://doi.org/10.1016/j.celrep.2019.02.068 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Bai, L. et al. Hypoxic and cold adaptation insights from the Himalayan Marmot Genome. IScience 11, 519–530. https://doi.org/10.1016/j.isci.2018.11.034 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Stronen, A. V., Pertoldi, C., Iacolina, L., Kadarmideen, H. N. & Kristensen, T. N. Genomic analyses suggest adaptive differentiation of northern European native cattle breeds. Evol. Appl. https://doi.org/10.1111/eva.12783 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Lan, D. et al. Genetic diversity, molecular phylogeny, and selection evidence of Jinchuan Yak revealed by whole-genome resequencing. G3 (Bethesda, Md.) 8(3), 945–952. https://doi.org/10.1534/g3.118.300572 (2018).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Chen, J. et al. Deletion of TRPC6 attenuates NMDA receptor-mediated Ca2+ entry and Ca2+-induced neurotoxicity following cerebral ischemia and oxygen-glucose deprivation. Front. Neurosci. 11, 138. https://doi.org/10.3389/fnins.2017.00138 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Munsch, T., Freichel, M., Flockerzi, V. & Pape, H.-C. Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc. Natl. Acad. Sci. U. S. A. 100(26), 16065–16070. https://doi.org/10.1073/pnas.2535311100 (2003).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Duan, J. et al. Structure of the mouse TRPC4 ion channel. Nat. Commun. 9, 1–10. https://doi.org/10.1101/282715 (2018).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Malczyk, M. et al. The role of transient receptor potential channel 6 channels in the pulmonary vasculature. Front. Immunol. 8, 707. https://doi.org/10.3389/fimmu.2017.00707 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Li, S. et al. Crucial role of TRPC6 in maintaining the stability of HIF-1α in glioma cells under hypoxia. J. Cell Sci. 128(17), 3317–3329. https://doi.org/10.1242/jcs.173161 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Xu, L. et al. Chronic hypoxia increases TRPC6 expression and basal intracellular Ca2+ concentration in rat distal pulmonary venous smooth muscle. PLoS ONE 9(11), e112007. https://doi.org/10.1371/journal.pone.0112007 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Deng, L. et al. Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. Natl. Sci. Rev. 6(6), 1201–1222. https://doi.org/10.1093/nsr/nwz108 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Howard, J. T. et al. Beef cattle body temperature during climatic stress: A genome-wide association study. Int. J. Biometeorol. 58, 1665–1672. https://doi.org/10.1007/s00484-013-0773-5 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 51.

    Kijas, J. W. et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 10(2), e1001258. https://doi.org/10.1371/journal.pbio.1001258 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Wei, C. et al. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics 16(1), 1–12. https://doi.org/10.1186/s12864-015-1384-9 (2015).

    Article 

    Google Scholar 

  • 53.

    Chen, M. et al. Genome-wide detection of selection signatures in Chinese indigenous Laiwu pigs revealed candidate genes regulating fat deposition in muscle. BMC Genet. 19, 1–9. https://doi.org/10.1186/s12863-018-0622-y (2018).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Chen, C. et al. Copy number variation in the MSRB3 gene enlarges porcine ear size through a mechanism involving miR-584-5p. Genet. Sel. Evol. GSE 50, 1–18. https://doi.org/10.1186/s12711-018-0442-6 (2018).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Webster, M. T. et al. Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds. BMC Genomics 16, 474. https://doi.org/10.1186/s12864-015-1702-2 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Mastrangelo, S. et al. Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS ONE 14(6), e0209632. https://doi.org/10.1371/journal.pone.0209632 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Xi, Y. et al. HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ. Biochem. Biophys. Res. Commun. 472(4), 617–623. https://doi.org/10.1016/j.bbrc.2016.03.015 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Gou, X. et al. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res. 24(8), 1308–1315. https://doi.org/10.1101/gr.171876.113 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Yuan, Z. et al. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim. Genet. 48(1), 55–66. https://doi.org/10.1111/age.12477 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Zhu, C. et al. GWAS and Post-GWAS to Identification of Genes Associated with Sheep Tail Fat Deposition. Retrieved from https://www.preprints.org/manuscript/201906.0093/v1 (2019).

  • 61.

    Allais-Bonnet, A. et al. Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae. PLoS ONE 8(5), e63512. https://doi.org/10.1371/journal.pone.0063512 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Johnston, S. E. et al. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol. Ecol. 20(12), 2555–2566. https://doi.org/10.1111/j.1365-294X.2011.05076.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 63.

    Oksenberg, N., Stevison, L., Wall, J. D. & Ahituv, N. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genet. 9(1), e1003221. https://doi.org/10.1371/journal.pgen.1003221 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Hayashi, S. & Takeichi, M. Emerging roles of protocadherins: From self-avoidance to enhancement of motility. J. Cell Sci. 128(8), 1455–1464. https://doi.org/10.1242/jcs.166306 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 65.

    Seong, E., Yuan, L. & Arikkath, J. Cadherins and catenins in dendrite and synapse morphogenesis. Cell Adhes. Migr. 9(3), 202–213. https://doi.org/10.4161/19336918.2014.994919 (2015).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Shin, D.-H. et al. Deleted copy number variation of Hanwoo and Holstein using next generation sequencing at the population level. BMC Genomics 15(1), 240. https://doi.org/10.1186/1471-2164-15-240 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Zeng, X. Angus Cattle at High Altitude: Pulmonary Arterial Pressure, Estimated Breeding Value and Genome-Wide Association Study (PhD thesis). (Colorado State University, 2017).

  • 68.

    Benjelloun, B. Diversité des génomes et adaptation locale des petits ruminants d’un pays méditerranéen : le Maroc (PhD thesis) (Université Grenoble Alpes, France, 2015).

  • 69.

    Onzima, R. B. et al. Genome-wide characterization of selection signatures and runs of homozygosity in Ugandan Goat Breeds. Front. Genet. 9, 318. https://doi.org/10.3389/fgene.2018.00318 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Farzana, F. et al. Neurobeachin regulates glutamate- and GABA-receptor targeting to synapses via distinct pathways. Mol. Neurobiol. 53(4), 2112–2123. https://doi.org/10.1007/s12035-015-9164-8 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 71.

    Nair, R. et al. Neurobeachin regulates neurotransmitter receptor trafficking to synapses. J. Cell Biol. 200(1), 61–80. https://doi.org/10.1083/jcb.201207113 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Alberto, F. J. et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 9, 1–9. https://doi.org/10.1038/s41467-018-03206-y (2018).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Iranmehr, A. et al. Novel insight into the genetic basis of high-altitude pulmonary hypertension in Kyrgyz highlanders. Eur. J. Hum. Genet. EJHG 27(1), 150–159. https://doi.org/10.1038/s41431-018-0270-8 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 74.

    Newman, J. H. et al. High-altitude pulmonary hypertension in cattle (Brisket disease): Candidate genes and gene expression profiling of peripheral blood mononuclear cells. Pulmon. Circ. 1(4), 462–469. https://doi.org/10.4103/2045-8932.93545 (2011).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Yang, X., Kong, Q., Zhao, C., Cai, Z., & Wang, M. New pathogenic variant of BMPR2 in pulmonary arterial hypertension. Cardiology in the Young, 29(4), 462–466. https://doi.org/10.1017/S1047951119000015 (2019).

  • 76.

    Anderson, L. et al. Bmp2 and Bmp4 exert opposing effects in hypoxic pulmonary hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298(3), R833–R842. https://doi.org/10.1152/ajpregu.00534.2009 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Ciani, E. et al. Genome-wide analysis of Italian sheep diversity reveals a strong geographic pattern and cryptic relationships between breeds. Anim. Genet. 45(2), 256–266. https://doi.org/10.1111/age.12106 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 78.

    ESRI. ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).

    Google Scholar 

  • 79.

    Ruiz, M. & Ruiz, J. P. Ecological history of transhumance in Spain. Biol. Conserv. 37, 73–86 (1986).

    Article 

    Google Scholar 

  • 80.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 81.

    Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled seamless SRTM dataV4, International Centre for Tropical Agriculture (CIAT). Available from https://srtm.csi.cgiar.org (2008).

  • 82.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). https://www.R-project.org.

  • 83.

    Brenning, A. Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models. In Hamburger Beitraege zur Physischen Geographie und Landschaftsoekologie (eds Böhner, J. et al.) 23–32 (SAGA, 2008).

    Google Scholar 

  • 84.

    Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn (Springer, 2013). http://www.asdar-book.org/.

  • 85.

    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5(2), 9–13. https://CRAN.R-project.org/doc/Rnews/ (2005).

  • 86.

    Keitt, T. H., Bivand, R., Pebesma, E. & Rowlingson, B. rgdal: Bindings for the geospatial data abstraction library. Copy at http://www.tinyurl.com/h8w8n29 (2010).

  • 87.

    Le, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01 (2008).

    Article 

    Google Scholar 

  • 88.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575. https://doi.org/10.1086/519795 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6(8), 925–929. https://doi.org/10.1111/2041-210X.12382 (2015).

    Article 

    Google Scholar 

  • 91.

    Cattell, R. B. The Scree plot test for the number of factors. Multivar. Behav. Res. 1, 140–161 (1966).

    Google Scholar 

  • 92.

    Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U. S. A. 100, 9440–9445. https://doi.org/10.1073/pnas.1530509100 (2003).

    ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • 93.

    Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 94.

    Ablondi, M., Viklund, Å., Lindgren, G., Eriksson, S. & Mikko, S. Signatures of selection in the genome of Swedish warmblood horses selected for sport performance. BMC Genomics 20(1), 717. https://doi.org/10.1186/s12864-019-6079-1 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Avila, F., Mickelson, J. R., Schaefer, R. J. & McCue, M. E. Genome-wide signatures of selection reveal genes associated with performance in American Quarter Horse subpopulations. Front. Genet. 9, 249. https://doi.org/10.3389/fgene.2018.00249 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Chen, M. et al. Identification of selective sweeps reveals divergent selection between Chinese Holstein and Simmental cattle populations. Genet. Sel. Evol. 48(1), 76. https://doi.org/10.1186/s12711-016-0254-5 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 97.

    Cheruiyot, E. K. et al. Signatures of selection in admixed dairy cattle in Tanzania. Front. Genet. 9, 607. https://doi.org/10.3389/fgene.2018.00607 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    López, M. E. et al. Multiple selection signatures in farmed Atlantic Salmon adapted to different environments across hemispheres. Front. Genet. 10, 901. https://doi.org/10.3389/fgene.2019.00901 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19(9), 1655–1664. https://doi.org/10.1101/gr.094052.109 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 12, 246 (2011).

    Article 

    Google Scholar 

  • 101.

    Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & Francois, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).

    Article 

    Google Scholar 

  • 102.

    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15(5), 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Contrasting environmental drivers of genetic and phenotypic divergence in an Andean poison frog (Epipedobates anthonyi)

    Terrestrial connectivity, upstream aquatic history and seasonality shape bacterial community assembly within a large boreal aquatic network