in

Spatio-temporal prediction of the COVID-19 pandemic in US counties: modeling with a deep LSTM neural network

  • 1.

    Gallo Marin, B. et al. Predictors of COVID-19 severity: A literature review. Rev. Med. Virol. 31, 1–10 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Worldometers. COVID-19 Coronavirus Pandemic. https://www.worldometers.info/coronavirus/ (Accessed 5 May 2021) (2021).

  • 3.

    The New York Times. Coronavirus World Map: Tracking the Global Outbreak. https://www.nytimes.com/interactive/2020/world/coronavirus-maps.html (Accessed 5 May) (2021).

  • 4.

    Sartorius, B., Lawson, A. & Pullan, R. Modelling and predicting the spatio-temporal spread of COVID-19, associated deaths and impact of key risk factors in England. Sci. Rep. 11, 5378 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Gamio, L. & Symonds, A. Global Virus Cases Reach New Peak, Driven by India and South America. https://nyti.ms/3xYVO94 (Accessed on 5 May 2021) (2021).

  • 6.

    Samuel, J. et al. COVID-19 public sentiment insights and machine learning for tweets classification. Information 11, 314 (2020).

    Article 

    Google Scholar 

  • 7.

    Borriello, A., Master, D., Pellegrini, A. & Rose, J. M. Preferences for a COVID-19 vaccine in Australia. Vaccine 39, 473–479 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Samuel, J. et al. Feeling positive about reopening? New normal scenarios from COVID-19 US reopen sentiment analytics. IEEE Access 8, 142173–142190 (2020).

    Article 

    Google Scholar 

  • 9.

    Max Roser, E. O.-O., Ritchie, H. & Hasell, J. Coronavirus pandemic (COVID-19). https://ourworldindata.org/coronavirus (Accessed on 5 June 2021) (2020).

  • 10.

    Centers for Disease Control and Prevention. About variants of the virus that causes COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/transmission/variant.html (Accessed on 5 June 2021) (2021).

  • 11.

    Ali, G. G. M. N. et al. Public perceptions of COVID-19 vaccines: Policy implications from US spatiotemporal sentiment analytics. Healthcare 9, 1110 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Al Zobbi, M., Alsinglawi, B., Mubin, O. & Alnajjar, F. Measurement method for evaluating the lockdown policies during the COVID-19 pandemic. Int. J. Environ. Res. Public Health 17, 5574 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Lu, X., Yuan, D., Chen, W. & Fung, J. A machine learning based forecast model for the COVID-19 pandemic and investigation of the impact of government intervention on COVID-19 transmission in China (2020). Preprint on webpage at www.researchsquare.com/article/rs-73671/v1.

  • 14.

    Vinceti, M. et al. Lockdown timing and efficacy in controlling COVID-19 using mobile phone tracking. EClinicalMedicine 25, 100457 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Rahman, M. et al. Machine learning on the COVID-19 pandemic, human mobility and air quality: A review. IEEE Access 9, 72420–72450 (2021).

    Article 

    Google Scholar 

  • 16.

    Rahman, M. et al. COVID-19 pandemic severity, lockdown regimes, and people’s mobility: Early evidence from 88 countries. Sustainability 12, 9101 (2020).

    Article 

    Google Scholar 

  • 17.

    Silva, P. C. et al. COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions. Chaos Solitons Fractals 139, 110088 (2020).

    MathSciNet 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Rahman, M. M. et al. Socioeconomic factors analysis for COVID-19 US reopening sentiment with Twitter and census data. Heliyon 7, e06200 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    USAFacts. US COVID-19 cases and deaths by state. https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/ (Accessed 5 June 2021) (2020).

  • 20.

    Wynants, L. et al. Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. BMJ. 369(8242), m1328 (2020).

  • 21.

    Swapnarekha, H., Behera, H. S., Nayak, J. & Naik, B. Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review. Chaos Solitons Fractals 138, 109947 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Xiang, Y. et al. COVID-19 epidemic prediction and the impact of public health interventions: A review of COVID-19 epidemic models. Infect. Dis. Model. 6, 324–342 (2021).

  • 23.

    Roy, A. & Kar, B. Characterizing the spread of COVID-19 from human mobility patterns and SocioDemographic indicators. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities, 39–48 (2020).

  • 24.

    Scarpone, C. et al. A multimethod approach for county-scale geospatial analysis of emerging infectious diseases: A cross-sectional case study of COVID-19 incidence in Germany. Int. J. Health Geogr. 19, 32 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Polyzos, S., Samitas, A. & Spyridou, A. E. Tourism demand and the COVID-19 pandemic: An LSTM approach. Tour. Recreat. Res. 46(2), 1777053 (2020).

  • 26.

    Iwendi, C. et al. COVID-19 patient health prediction using boosted random forest algorithm. Front. Public Health 8, 357 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Hou, X. et al. Intra-county modeling of COVID-19 infection with human mobility: assessing spatial heterogeneity with business traffic, age and race (2020). Preprint on webpage at https://doi.org/10.1101/2020.10.04.20206763v1.

  • 28.

    Tang, B. et al. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect. Dis. Model. 5, 248–255 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Zhao, S. et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 92, 214–217 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Fanelli, D. & Piazza, F. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals 134, 109761 (2020).

    MathSciNet 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Choi, S. & Ki, M. Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiol. Health 42, e2020011 (2020).

  • 32.

    Tolles, J. & Luong, T. Modeling epidemics with compartmental models. JAMA 323, 2515–2516 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Soures, N. et al. SIRNet: Understanding social distancing measures with hybrid neural network model for COVID-19 infectious spread. arXiv (2020). preprint on webpage at arXiv:2004.10376.

  • 34.

    Chimmula, V. K. R. & Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons Fractals 135, 109864 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Wang, D. et al. Agent-based Simulation Model and Deep Learning Techniques to Evaluate and Predict Transportation Trends around COVID-19. arXiv (2020). Preprint on webpage at arXiv:2010.09648.

  • 36.

    Kai, D., Goldstein, G.-P., Morgunov, A., Nangalia, V. & Rotkirch, A. Universal masking is urgent in the covid-19 pandemic: Seir and agent based models, empirical validation, policy recommendations. arXiv (2020). Preprint on webpage at arXiv:2004.13553.

  • 37.

    Panovska-Griffiths, J. et al. Modelling the potential impact of mask use in schools and society on COVID-19 control in the UK. Sci. Rep. 11, 8747 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Szczepanek, R. Analysis of pedestrian activity before and during COVID-19 lockdown, using webcam time-lapse from cracow and machine learning. PeerJ 8, e10132 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Ahmed, I., Ahmad, M., Rodrigues, J. J., Jeon, G. & Din, S. A deep learning-based social distance monitoring framework for COVID-19. Sustain. Cities Soc. 65, 102571 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Spada, A. et al. Structural equation modeling to shed light on the controversial role of climate on the spread of SARS-CoV-2. Sci. Rep. 11, 8358 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Jiang, F. et al. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2, e000101 (2017).

    Article 

    Google Scholar 

  • 42.

    Khalifa, N. E. M., Taha, M. H. N., Ali, D. E., Slowik, A. & Hassanien, A. E. Artificial intelligence technique for gene expression by tumor RNA-Seq data: A novel optimized deep learning approach. IEEE Access 8, 22874–22883 (2020).

    Article 

    Google Scholar 

  • 43.

    Dexter, G. P., Grannis, S. J., Dixon, B. E. & Kasthurirathne, S. N. Generalization of machine learning approaches to identify notifiable conditions from a statewide health information exchange. AMIA Summits Transl. Sci. Proc. 2020, 152–161 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Wang, Y., Liao, Z., Mathieu, S., Bin, F. & Tu, X. Prediction and evaluation of plasma arc reforming of naphthalene using a hybrid machine learning model. J. Hazard. Mater. 404, 123965 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Shao, Y. E., Hou, C.-D. & Chiu, C.-C. Hybrid intelligent modeling schemes for heart disease classification. Appl. Soft Comput. 14, 47–52 (2014).

    Article 

    Google Scholar 

  • 46.

    Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3, 199–217 (2021).

    Article 

    Google Scholar 

  • 47.

    Sun, J. et al. Forecasting the long-term trend of COVID-19 epidemic using a dynamic model. Sci. Rep. 10, 1–10 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 48.

    Chen, Y., Qin, R., Zhang, G. & Albanwan, H. Spatial temporal analysis of traffic patterns during the COVID-19 epidemic by vehicle detection using planet remote-sensing satellite images. Remote Sens. 13, 208 (2021).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Briz-Redón, Á. & Serrano-Aroca, Á. A spatio-temporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain. Sci. Total Environ. 728, 138811 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Liu, Q. et al. Spatiotemporal patterns of COVID-19 impact on human activities and environment in mainland China using nighttime light and air quality data. Remote Sens. 12, 1576 (2020).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Jarvis, K. F. & Kelley, J. B. Temporal dynamics of viral load and false negative rate influence the levels of testing necessary to combat COVID-19 spread. Sci. Rep. 11, 1–12 (2021).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Ugarte, M. D., Adin, A., Goicoa, T. & Militino, A. F. On fitting spatio-temporal disease mapping models using approximate Bayesian inference. Stat. Methods Med. Res. 23, 507–530 (2014).

    MathSciNet 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Zhang, C. H. & Schwartz, G. G. Spatial disparities in coronavirus incidence and mortality in the United States: An ecological analysis as of May 2020. J. Rural Health 36, 433–445 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Fitzpatrick, K. M., Harris, C. & Drawve, G. Fear of COVID-19 and the mental health consequences in America. Psychol. Trauma Theory Res. Pract. Policy 12, S17–S21 (2020).

    Article 

    Google Scholar 

  • 55.

    Lalmuanawma, S., Hussain, J. & Chhakchhuak, L. Applications of machine learning and artificial intelligence for covid-19 (SARS-CoV-2) pandemic: A review. Chaos Solitons Fractals 139, 110059 (2020).

    MathSciNet 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Adhikari, B., Xu, X., Ramakrishnan, N. & Prakash, B. A. Epideep: Exploiting embeddings for epidemic forecasting. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 577–586 (2019).

  • 57.

    Gautam, Y. Transfer learning for COVID-19 cases and deaths forecast using LSTM network. ISA Transactions (2021).

  • 58.

    Chen, S. et al. Exploring feasibility of multivariate deep learning models in predicting covid-19 epidemic. Front. Public Health 9, 661615 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Venna, S. R. et al. A novel data-driven model for real-time influenza forecasting. IEEE Access 7, 7691–7701 (2018).

    Article 

    Google Scholar 

  • 60.

    Wu, D. et al. Deepgleam: a hybrid mechanistic and deep learning model for covid-19 forecasting. arXiv (2021). Preprint on webpage at arXiv:2102.06684.

  • 61.

    Zhu, X. et al. Attention-based recurrent neural network for influenza epidemic prediction. BMC Bioinform. 20, 575 (2019).

    Article 

    Google Scholar 

  • 62.

    Ben Said, A., Erradi, A., Aly, H. & Mohamed, A. Predicting covid-19 cases using bidirectional lstm on multivariate time series. arXiv (2020). Preprint on webpage at arXiv:2009.12325.

  • 63.

    Aktay A., A. et al. Google COVID-19 Community Mobility Reports: anonymization process description (version 1.1). arXiv (2020). Preprint on webpage at arXiv:2004.04145.

  • 64.

    SafeGraph. SafeGraph Places Schema. https://docs.safegraph.com/docs (Accessed 15 Sept 2020) (2020).

  • 65.

    Johns Hopkins University. COVID-19 dashboard by the center for systems science and engineering (CSSE) at Johns Hopkins University (JHU). https://coronavirus.jhu.edu/us-map (Accessed 15 Sept 2020) (2020).

  • 66.

    Ray, E. L. et al. Ensemble forecasts of coronavirus disease 2019 (covid-19) in the us. MedRXiv (2020). Preprint on webpage at https://www.medrxiv.org/content/10.1101/2020.08.19.20177493v1.

  • 67.

    Cartenì, A., Di Francesco, L. & Martino, M. How mobility habits influenced the spread of the COVID-19 pandemic: Results from the Italian case study. Sci. Total Environ. 741, 140489 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Reich, N. et al. har96, x. Zhang, jinghuichen, G. Espana, X. Xinyue, H. Biegel, L. Castro, Y. Wang, qjhong, E. Lee, A. Baxter, S. Bhatia, E. Ray, and abrennen, and ERDC CV19 Modeling Team (2020). Preprint on webpage at https://github.com/reichlab/covid19-forecast-hub/tree/master/data-processed/COVIDhub-ensemble.

  • 69.

    Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Yao, W., Huang, P. & Jia, Z. Multidimensional lstm networks to predict wind speed. In 2018 37th Chinese Control Conference (CCC), 7493–7497 (IEEE, 2018).

  • 71.

    Cromley, E. K. & McLafferty, S. L. GIS and Public Health (Guilford Press, XXX, 2011).

    Google Scholar 

  • 72.

    Veličković, P. et al. Cross-modal recurrent models for weight objective prediction from multimodal time-series data. In Proceedings of the 12th EAI International Conference on Pervasive Computing Technologies for Healthcare, 178–186 (2018).

  • 73.

    Shi, X. & Yeung, D.-Y. Machine learning for spatiotemporal sequence forecasting: A survey. arXiv (2018). Preprint on webpage at arXiv:1808.06865.

  • 74.

    Bengio, S., Vinyals, O., Jaitly, N. & Shazeer, N. Scheduled sampling for sequence prediction with recurrent neural networks. arXiv (2015). Preprint on webpage at arXiv:1506.03099.

  • 75.

    Taieb, S. B. & Hyndman, R. Boosting multi-step autoregressive forecasts. In International Conference on Machine Learning, Vol. 32, 109–117 (PMLR, 2014). http://proceedings.mlr.press/v32/taieb14.html.

  • 76.

    Veličković, P. et al. Graph attention networks. arXiv (2017). Preprint on webpage at arXiv:1710.10903.

  • 77.

    Hamilton, W. L., Ying, R. & Leskovec, J. Inductive representation learning on large graphs. arXiv (2017). Preprint on webpage at arXiv:1706.02216.


  • Source: Ecology - nature.com

    Functional diversity effects on productivity increase with age in a forest biodiversity experiment

    MIT Energy Night 2021: Connecting global innovators to local talent