in

Reply to: Spatial scale and the synchrony of ecological disruption

  • 1.

    Colwell, R. K. Spatial scale and the synchrony of ecological disruption. Nature https://doi.org/10.1038/s41586-021-03760-4 (2021).

  • 2.

    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).

    Article 

    Google Scholar 

  • 4.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Ricklefs, R. E. Disintegration of the ecological community. Am. Nat. 172, 741–750 (2008).

    Article 

    Google Scholar 

  • 6.

    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Nadeau, C. P., Urban, M. C. & Bridle, J. R. Coarse climate change projections for species living in a fine-scaled world. Glob. Change Biol. 23, 12–24 (2017).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Stewart, S. B. et al. Climate extreme variables generated using monthly time‐series data improve predicted distributions of plant species. Ecography 44, 626–639 (2021).

    Article 

    Google Scholar 

  • 9.

    Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).

    ADS 
    Article 

    Google Scholar 

  • 10.

    McKechnie, A. E. & Wolf, B. O. The Physiology of Heat Tolerance in Small Endotherms. Physiology 34, 302–313 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    Article 

    Google Scholar 

  • 12.

    Mahony, C. R. & Cannon, A. J. Wetter summers can intensify departures from natural variability in a warming climate. Nat. Commun. 9, 783 (2018).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Molnár, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. Predicting survival, reproduction and abundance of polar bears under climate change. Biol. Conserv. 143, 1612–1622 (2010).

    Article 

    Google Scholar 

  • 14.

    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).

    Article 

    Google Scholar 

  • 16.

    Genin, A., Levy, L., Sharon, G., Raitsos, D. E. & Diamant, A. Rapid onsets of warming events trigger mass mortality of coral reef fish. Proc. Natl Acad. Sci. USA 117, 25378–25385 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

    Article 

    Google Scholar 

  • 23.

    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).

    Article 

    Google Scholar 

  • 26.

    NOAA National Geophysical Data Center. 2009: ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for Environmental Information. Accessed 10.05.2021.


  • Source: Ecology - nature.com

    Contact calls in woodpeckers are individually distinctive, show significant sex differences and enable mate recognition

    Translation stalling proline motifs are enriched in slow-growing, thermophilic, and multicellular bacteria