in

Dynamic monitoring of urban built-up object expansion trajectories in Karachi, Pakistan with time series images and the LandTrendr algorithm

  • 1.

    Seto, K. C., Fragkias, M., Gueneralp, B. & Reilly, M. K. A meta-analysis of global urban land expansion. PLoS ONE https://doi.org/10.1371/journal.pone.0023777 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Huang, Q. X. et al. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 15, 14. https://doi.org/10.1088/1748-9326/ab858c (2020).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Huang, X., Huang, J. Y., Wen, D. W. & Li, J. Y. An updated MODIS global urban extent product (MGUP) from 2001 to 2018 based on an automated mapping approach. Int. J. Appl. Earth Obs. Geoinf. 95, 15. https://doi.org/10.1016/j.jag.2020.102255 (2021).

    Article 

    Google Scholar 

  • 4.

    Seto, K. C., Fragkias, M., Guneralp, B. & Reilly, M. K. A meta-analysis of global urban land expansion. PLoS ONE 6, 9. https://doi.org/10.1371/journal.pone.0023777 (2011).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Besthorn, F. H. Vertical farming: Social work and sustainable urban agriculture in an age of global food crises. Aust. Soc. Work. 66, 187–203. https://doi.org/10.1080/0312407x.2012.716448 (2013).

    Article 

    Google Scholar 

  • 6.

    FAO. 2018 The State of Food Security and Nutrition in the World. https://www.who.int/nutrition/publications/foodsecurity/state-food-security-nutrition-2018/en/. (2018).

  • 7.

    Mertes, C. M., Schneider, A., Sulla-Menashe, D., Tatem, A. J. & Tan, B. Detecting change in urban areas at continental scales with MODIS data. Remote Sens. Environ. 158, 331–347. https://doi.org/10.1016/j.rse.2014.09.023 (2015).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Xiao, P. F., Wang, X. H., Feng, X. Z., Zhang, X. L. & Yang, Y. K. Detecting China’s urban expansion over the past three decades using nighttime light data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 4095–4106. https://doi.org/10.1109/jstars.2014.2302855 (2014).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10, 989–1003 (1989).

    Article 

    Google Scholar 

  • 10.

    Reba, M. & Seto, K. C. A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sens. Environ. 242, 20. https://doi.org/10.1016/j.rse.2020.111739 (2020).

    Article 

    Google Scholar 

  • 11.

    He, T., Xiao, W., Zhao, Y., Deng, X. & Hu, Z. Identification of waterlogging in Eastern China induced by mining subsidence: A case study of Google Earth Engine time-series analysis applied to the Huainan coal field. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2020.111742 (2020).

    Article 

    Google Scholar 

  • 12.

    Mugiraneza, T., Nascetti, A. & Ban, Y. Continuous monitoring of urban land cover change trajectories with Landsat time series and LandTrendr-Google Earth engine cloud computing. Remote Sens. https://doi.org/10.3390/rs12182883 (2020).

    Article 

    Google Scholar 

  • 13.

    U.S. Geological Survey. Landsat Surface Reflectance Data (Ver. 1.1, March 27, 2019): U.S. Geological Survey Fact Sheet 2015-3034. 1. https://doi.org/10.3133/fs20153034 (2019).

  • 14.

    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 (2017).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Cai, S. & Liu, D. Detecting change dates from dense satellite time series using a sub-annual change detection algorithm. Remote Sens. 7, 8705–8727. https://doi.org/10.3390/rs70708705 (2015).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Vogelmann, J. E., Xian, G., Homer, C. & Tolk, B. Monitoring gradual ecosystem change using Landsat time series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 122, 92–105. https://doi.org/10.1016/j.rse.2011.06.027 (2012).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Brooks, E. B., Wynne, R. H., Thomas, V. A., Blinn, C. E. & Coulston, J. W. On-the-fly massively multitemporal change detection using statistical quality control charts and Landsat data. IEEE Trans. Geosci. Remote Sens. 52, 3316–3332. https://doi.org/10.1109/tgrs.2013.2272545 (2014).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Huang, C. et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 114, 183–198. https://doi.org/10.1016/j.rse.2009.08.017 (2010).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Verbesselt, J., Hyndman, R., Newnham, G. & Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 114, 106–115. https://doi.org/10.1016/j.rse.2009.08.014 (2010).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Hughes, M. J., Kaylor, S. D. & Hayes, D. J. Patch-based forest change detection from landsat time series. Forests https://doi.org/10.3390/f8050166 (2017).

    Article 

    Google Scholar 

  • 21.

    Deng, C. B. & Zhu, Z. Continuous subpixel monitoring of urban impervious surface using Landsat time series. Remote Sens. Environ. 238, 21. https://doi.org/10.1016/j.rse.2018.10.011 (2020).

    Article 

    Google Scholar 

  • 22.

    Zhu, Z. et al. Continuous monitoring of land disturbance based on Landsat time series, remote sensing of environment. Remote Sens. Environ. 238(11116), 2020. https://doi.org/10.1016/j.rse.2020.111824 (2020).

    Article 

    Google Scholar 

  • 23.

    Kennedy, R. E. et al. Implementation of the LandTrendr algorithm on Google Earth Engine. Remote Sens. https://doi.org/10.3390/rs10050691 (2018).

    Article 

    Google Scholar 

  • 24.

    Hirayama, H., Sharma, R. C., Tomita, M. & Hara, K. Evaluating multiple classifier system for the reduction of salt-and-pepper noise in the classification of very-high-resolution satellite images. Int. J. Remote Sens. 40, 2542–2557. https://doi.org/10.1080/01431161.2018.1528400 (2019).

    Article 

    Google Scholar 

  • 25.

    Carleer, A. P., Debeir, O. & Wolff, E. Assessment of very high spatial resolution satellite image segmentations. Photogramm. Eng. Remote. Sens. 71, 1285–1294. https://doi.org/10.14358/pers.71.11.1285 (2005).

    Article 

    Google Scholar 

  • 26.

    Su, T. C. A filter-based post-processing technique for improving homogeneity of pixel-wise classification data. Eur. J. Remote Sens. 49, 531–552. https://doi.org/10.5721/EuJRS20164928 (2016).

    Article 

    Google Scholar 

  • 27.

    Zhu, X. Land cover classification using moderate resolution satellite imagery and random forests with post-hoc smoothing. J. Spat. Sci. 58, 323–337. https://doi.org/10.1080/14498596.2013.819600 (2013).

    Article 

    Google Scholar 

  • 28.

    Xu, H. Z. Y., Wei, Y. C., Liu, C., Li, X. & Fang, H. A scheme for the long-term monitoring of impervious-relevant land disturbances using high frequency Landsat archives and the Google Earth Engine. Remote Sens. 11, 27. https://doi.org/10.3390/rs11161891 (2019).

    Article 

    Google Scholar 

  • 29.

    Baqa, M. F. et al. Monitoring and modeling the patterns and trends of urban growth using urban sprawl matrix and CA-Markov model: A case study of Karachi, Pakistan. Land https://doi.org/10.3390/land10070700 (2021).

    Article 

    Google Scholar 

  • 30.

    Group, W. B. Transforming Karachi into a Livable and Competitive Megacity—A City Diagnostic and Transformation Strategy. (2018).

  • 31.

    Arif, H., Noman, A., Mansoor, R. & Asiya, S. Land Ownership, Control and Contestation in Karachi and Implications for Low-Income Housing. (Human Settlements Group, International Institute for Environment and Development (IIED), 2013).

  • 32.

    Karachi’s Population—Fiction and Reality. The Express Tribune. https://tribune.com.pk/story/1505657/karachis-population-fiction-reality. Accessed 1 May 2021.

  • 33.

    Senf, C., Pflugmacher, D., Wulder, M. A. & Hostert, P. Characterizing spectral-temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 170, 166–177. https://doi.org/10.1016/j.rse.2015.09.019 (2015).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Mi, J. X. et al. Tracking the land use/land cover change in an area with underground mining and reforestation via continuous landsat classification. Remote Sens. https://doi.org/10.3390/rs11141719 (2019).

    Article 

    Google Scholar 

  • 35.

    de Jong, S. M. et al. Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. Int. J. Appl. Earth Observ. Geoinf. https://doi.org/10.1016/j.jag.2020.102293 (2021).

    Article 

    Google Scholar 

  • 36.

    Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2019.111510 (2020).

    Article 

    Google Scholar 

  • 37.

    Xu, H., Wei, Y., Liu, C., Li, X. & Fang, H. A scheme for the long-term monitoring of impervious-relevant land disturbances using high frequency Landsat archives and the Google earth engine. Remote Sens. https://doi.org/10.3390/rs11161891 (2019).

    Article 

    Google Scholar 

  • 38.

    Li, X. C. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab9be3 (2020).

    Article 

    Google Scholar 

  • 39.

    Global Human Settlement Layer. https://ghsl.jrc.ec.europa.eu/. Accessed 1 May 2021.

  • 40.

    Raza, D. et al. Satellite Based Surveillance of LULC with Deliberation on Urban Land Surface Temperature and Precipitation Pattern Changes of Karachi, Pakistan. (2019).

  • 41.

    Yu, L., Wang, J. & Gong, P. Improving 30m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: A segmentation-based approach. Int. J. Remote Sens. 34, 5851–5867. https://doi.org/10.1080/01431161.2013.798055 (2013).

    Article 

    Google Scholar 

  • 42.

    Kennedy, R. E., Yang, Z. G. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910. https://doi.org/10.1016/j.rse.2010.07.008 (2010).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Meigs, G. W., Kennedy, R. E. & Cohen, W. B. A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sens. Environ. 115, 3707–3718. https://doi.org/10.1016/j.rse.2011.09.009 (2011).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Yin, H. et al. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 210, 12–24. https://doi.org/10.1016/j.rse.2018.02.050 (2018).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Yin, H., Pflugmacher, D., Li, A., Li, Z. & Hostert, P. Land use and land cover change in Inner Mongolia—Understanding the effects of China’s re-vegetation programs. Remote Sens. Environ. 204, 918–930. https://doi.org/10.1016/j.rse.2017.08.030 (2018).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Zhu, L., Liu, X., Wu, L., Tang, Y. & Meng, Y. Long-term monitoring of cropland change near Dongting Lake, China, using the LandTrendr algorithm with Landsat imagery. Remote Sens. https://doi.org/10.3390/rs11101234 (2019).

    Article 

    Google Scholar 

  • 47.

    Kennedy, R. E. et al. Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA. Remote Sens. Environ. 166, 271–285. https://doi.org/10.1016/j.rse.2015.05.005 (2015).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Zhu, Z. et al. Continuous monitoring of land disturbance based on Landsat time series. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2019.03.009 (2020).

    Article 

    Google Scholar 

  • 49.

    Yan, J. et al. A time-series classification approach based on change detection for rapid land cover mapping. ISPRS J. Photogramm. Remote Sens. 158, 249–262. https://doi.org/10.1016/j.isprsjprs.2019.10.003 (2019).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Crist, E. P. & Kauth, R. J. The tasseled cap de-mystified. Photogramm. Eng. Remote Sens. 52, 81–86 (1986).

    Google Scholar 

  • 51.

    Lin, L. et al. Monitoring land cover change on a rapidly urbanizing island using Google Earth Engine. Appl. Sci.-Basel. https://doi.org/10.3390/app10207336 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Chen, C. et al. Analysis of regional economic development based on land use and land cover change information derived from Landsat imagery. Sci. Rep. https://doi.org/10.1038/s41598-020-69716-2 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Zhang, X. Y., Feng, X. Z. & Wang, K. Integration of classifiers for improvement of vegetation category identification accuracy based on image objects. N. Z. J. Agric. Res. 50, 1125–1133. https://doi.org/10.1080/00288230709510394 (2007).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Energy hackers give a glimpse of a postpandemic future

    An energy-storage solution that flows like soft-serve ice cream