in

Hydrogen peroxide can be a plausible biomarker in cyanobacterial bloom treatment

  • 1.

    Barrington, D. J. & Ghadouani, A. Application of hydrogen peroxide for the removal of toxic cyanobcteria and other phytoplankton from waste water. Environ. Sci. Technol. 4(23), 8916–8921 (2008).

    ADS 

    Google Scholar 

  • 2.

    Lurling, M., Meng, D. & Fassen, E. L. Effects of hydrogen peroxide and ultrasound on biomass reduction and toxin release in cyanobacterium, Microcytis aeruginosa. Toxins 6(12), 3260–3281 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Ghime, D. & Ghosh, P. Advanced oxidation processes: A powerful treatment option for the removal of recalcitrant organic compounds. In Advanced Oxidation Processes-Applications, Trends, and Prospects (IntechOpen, 2020).

  • 4.

    Rahdar, S., Igwegbe, C. A., Ghasem, M. & Ahmadi, S. Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2). MethodsX 6, 492–499 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Derakhshan, Z. et al. Evaluation of kenaf fibers as moving bed biofilm carriers in algal membrane photobioreactor. Ecotoxicol. Environ. Saf. 152, 1–7 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • 6.

    Shekoohiyan, S. et al. Performance evaluation of cyanobacteria removal from water reservoirs by biological method. Afr. J. Microbiol. Res. 7(17), 1729–1734 (2013).

    CAS 

    Google Scholar 

  • 7.

    Cooper, W. J., Zika, R., Petasne, R. G. & Plane, J. M. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environ. Sci. Technol. 22, 1156–1160. https://doi.org/10.1021/es00175a004 (1988).

    ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 8.

    Cooper, W. J., Lean, D. R. S. & Carey, J. H. Spatial and temporal patterns of hydrogen peroxide in lake waters. Can. J. Fish. Aquat. Sci. 46, 1227–1231. https://doi.org/10.1139/f89-158 (1989).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Cory, R. M. et al. Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00054 (2016).

    Article 

    Google Scholar 

  • 10.

    Caverzan, A. et al. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35(4), 1011–1019 (2012).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 11.

    Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1–26 (2012).

    Google Scholar 

  • 12.

    Ugya, A. Y., Imam, T. S., Li, A., Ma, J. & Hua, X. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: A mini review. J. Chem. Ecol. 36(2), 174–193 (2020).

    CAS 

    Google Scholar 

  • 13.

    Rastogi, R. P., Singh, S. P., Häder, D.-P. & Sinha, R. P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 397(3), 603–607 (2010).

    PubMed 
    CAS 

    Google Scholar 

  • 14.

    Foyer, C. H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 154, 134–142 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 15.

    Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12), 909–930 (2010).

    PubMed 
    CAS 

    Google Scholar 

  • 16.

    Ma, Z. & Gao, K. Spiral breakage and photoinhibition of Arthrospira platensis (Cyanophyta) caused by accumulation of reactive oxygen species under solar radiation. Environ. Exp. Bot. 68(2), 208–213 (2010).

    CAS 

    Google Scholar 

  • 17.

    Welkie, D. G. et al. A hard day’s night: Cyanobacteria in diel cycles. Trends Microbiol. 27(3), 231–242 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • 18.

    Latifi, A., Ruiz, M. & Zhang, C. C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33(2), 258–278 (2009).

    PubMed 
    CAS 

    Google Scholar 

  • 19.

    Lea-Smith, D. J., Bombelli, P., Vasudevan, R. & Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta (BBA) Bioenerg. 1857(3), 247–255 (2016).

    CAS 

    Google Scholar 

  • 20.

    Raja, V., Majeed, U., Kang, H., Andrabi, K. I. & John, R. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 137, 142–157 (2017).

    CAS 

    Google Scholar 

  • 21.

    Asada, S., Fukuda, K., Oh, M., Hamanishi, C. & Tanaka, S. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm. Res. 48(7), 399–403 (1999).

    PubMed 
    CAS 

    Google Scholar 

  • 22.

    Nishiyama, Y. & Murata, N. Revised scheme for the mechanisms of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl. Microbiol. Biotechnol. 98(21), 8777–8796 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • 23.

    Mikula, P., Zezulka, S., Jancula, D. & Marsalek, B. Metabolic activity and membrane integrity changes in Microcystis aeruginosa—New findings on hydrogen peroxide toxicity in cyanobacteria. Eur. J. Phycol. 47(3), 195–206 (2012).

    CAS 

    Google Scholar 

  • 24.

    Huisman, J. & Hulot, F. D. Population dynamics of harmful cyanobacteria. In Harmful Cyanobacteria, 143–176 (Springer, 2005).

  • 25.

    Bergström, A. K. The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquat. Sci. 72(3), 277–281 (2010).

    Google Scholar 

  • 26.

    Downing, J. A. & McCauley, E. The nitrogen: Phosphorus relationship in lakes. Limnol. Oceanogr. 37(5), 936–945 (1992).

    ADS 
    CAS 

    Google Scholar 

  • 27.

    Horne, A. J. & Goldman, C. R. Limnology Vol. 2 (McGraw-Hill, 1994).

    Google Scholar 

  • 28.

    Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11(1), 15–19. https://doi.org/10.1016/j.tplants.2005.11.002 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 29.

    Saints, M., Diaz, P., Monza, J. & Borsani, O. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus. Physiol. Plant 140(1), 46–56. https://doi.org/10.1111/j.1399-3054.2010.01383.x (2010).

    Article 
    CAS 

    Google Scholar 

  • 30.

    Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203(1), 3–43. https://doi.org/10.1111/nph.12797 (2014).

    Article 

    Google Scholar 

  • 31.

    Asaeda, T. & Barnuevo, A. Oxidative stress as an indicator of niche-width preference of mangrove Rhizophora stylosa. For. Ecol. Manag. 432, 73–82 (2019).

    Google Scholar 

  • 32.

    Asaeda, T., Senavirathna, M. D. H. J., Vamsi Krishna, L. & Yoshida, N. Impact of regulated water levels on willows (Salix subfragilis) at a flood-control dam, and the use of hydrogen peroxide as an indicator of environmenal stress. Ecol. Eng. 127, 96–102 (2019).

    Google Scholar 

  • 33.

    Asaeda, T., Senavirathna, M. D. H. J. & Vamsi Krishna, L. Evaluation of habitat preferance of invasive macrophyte Egeria densa in different channel slopes using hydrogen peroxide as an indicator. Front. Plant Sci. 11, 422. https://doi.org/10.3389/fpls.2020.00422 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Diaz, J. & Plummer, S. Production of extracellular reactive oxygen species by phytoplankton: Past and future directions. J. Plankton Res. 40(6), 655–666 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 35.

    Drábková, M., Admiraal, W. & Maršálek, B. Combined exposure to hydrogen peroxide and PAR selective effects on cyanobacteria, green algae, and diatoms. Environ. Sci. Technol. 41(1), 309–314 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • 36.

    Bouchard, J. N. & Purdie, D. A. Effect of elevated temperature, darkness and hydrogen peroxide treatment on oxidative stress and cell death in the bloom-forming toxic cyanobacterium Microcystis aeruginosa. J. Phycol. 47(6), 1316–1325 (2011).

    PubMed 
    CAS 

    Google Scholar 

  • 37.

    Leunert, F., Eckert, W., Paul, A., Gerhardt, V. & Grossart, H. P. Phytoplanktonic response to UV-generated hydrogen peroxide from natural organic matter. J. Plankton Res. 36(1), 185–197. https://doi.org/10.1093/plankt/fbt096 (2014).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Wang, B. et al. Optimization method for Microcystis bloom mitigation by hydrogen peroxide and its stimulative effects on growth of chlorophytes. Chemosphere 228, 503–512 (2019).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 39.

    Foo, S. C., Chapman, I. J., Hartnell, D. M., Turner, A. D. & Franklin, D. J. Effects of H2O2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa. Environ. Sci. Pollut. Res. 27(31), 38916–38927 (2020).

    CAS 

    Google Scholar 

  • 40.

    Barrington, D. J., Reichwaldt, E. S. & Ghadouani, A. The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecol. Eng. 50, 86–94 (2013).

    Google Scholar 

  • 41.

    Drábková, M., Matthijs, H., Admiraal, W. & Maršálek, B. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica 45(3), 363–369 (2007).

    Google Scholar 

  • 42.

    Marsac, N. T. D. Occurrence and nature of chromatic adaptation in cyanobacteria. J. Bacteriol. 130(1), 82–91 (1977).

    Google Scholar 

  • 43.

    Garcia, P. E., Queimalinos, C. & Dieguez, M. C. Natural levels and photo-production rates of hydrogen peroxide (H2O2) in Andean Patagonian aquatic sysyems: Influence of the dissolved organic matter pool. Chemosphere 217, 550–557 (2019).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 44.

    Herrmann, R. The daily changing pattern of hydrogen peroxide in New Zealand surface waters. Environ. Toxicol. Chem. 15(5), 652–662 (1996).

    CAS 

    Google Scholar 

  • 45.

    Spoof, L. et al. Elimination of cyanobacteria and microcystins in irrigation water—Effects of hydrogen peroxide treatment. Environ. Sci. Pollut. Res. 27(8), 8638–8652. https://doi.org/10.1007/s11356-019-07476-x (2020).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Lopez, C. V. G. et al. Protein measuremements of microalgae and cyanobacterial biomass. Bioresour. Technol. 101(19), 7587–7591 (2010).

    PubMed 

    Google Scholar 

  • 47.

    Vesterkvist, P. S. M., Misiorek, J. O., Spoof, L. E. M., Toivola, D. M. & Meriluoto, J. A. O. Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells. Toxins 4(11), 1008–1023 (2012).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 48.

    Preece, E. P., Hardy, F. J., Moore, B. C. & Bryan, M. A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. Harmful Algae 61, 31–45 (2017).

    CAS 

    Google Scholar 

  • 49.

    Pham, T.-L. & Utsumi, M. An overview of the accumulation of microcystins in aquatic ecosystems. J. Environ. Manag. 213, 520–529 (2018).

    CAS 

    Google Scholar 

  • 50.

    Goldman, J. C., McCarthy, J. J. & Peavey, D. G. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279(5710), 210–215 (1979).

    ADS 
    CAS 

    Google Scholar 

  • 51.

    Paerl, H. W., Fulton, R. S. 3rd., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World. J. 1, 76–113 (2001).

    CAS 

    Google Scholar 

  • 52.

    Xie, L., Xie, P., Li, S., Tang, H. & Liu, H. The low TN:TP ratio, a case or result of Microcystis blooms?. Water Res. 37(9), 2073–2080 (2003).

    PubMed 
    CAS 

    Google Scholar 

  • 53.

    Asaeda, T., Rashid, M. H. & Schoelynck, J. Tissue hydrogen peroxide concentration can explain the invasiveness of aquatic macrophytes: A modeling perspective. Front. Environ. Sci. 8, 292 (2021).

    ADS 

    Google Scholar 

  • 54.

    Hesse, K., Dittman, E. & Borner, T. Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC 7806. FEMS Microbiol. Ecol. 37(1), 39–43 (2001).

    CAS 

    Google Scholar 

  • 55.

    Tilzer, M. M. Light‐dependence of photosynthesis and growth in cyanobacteria: Implications for their dominance in eutrophic lakes. N. Z. J. Mar. Freshwater Res. 21(3), 401-412 (1987).

    Article 
    CAS 

    Google Scholar 

  • 56.

    Iwase, S. & Abe, Y. Identification and change in concentration of musty-odor compounds during growth in blue–green algae. J. Mar. Sci. Technol. 8(1), 27–33 (2010).

    Google Scholar 

  • 57.

    Abeynayaka, H. D. L., Asaeda, T. & Kaneko, Y. Buoyancy limitation of filamentous cyanobacteria under prolonged pressure due to the gas vesicle collapse. Environ. Manag. 60(2), 293–303 (2017).

    ADS 

    Google Scholar 

  • 58.

    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1), 1–61 (1979).

    Google Scholar 

  • 59.

    Jana, S. & Choudhuri, M. A. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat. Bot. 12, 345–354 (1982).

    CAS 

    Google Scholar 

  • 60.

    Veljovic-Jovanovic, S., Noctor, G. & Foer, C. H. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol. Biochem. 40, 501–507 (2002).

    CAS 

    Google Scholar 

  • 61.

    Cheeseman, J. M. Hydrogen peroxide concentrations in leaves under natular conditions. J. Exp. Bot. 57(10), 2435–2444 (2006).

    PubMed 
    CAS 

    Google Scholar 

  • 62.

    Queval, G., Hager, J., Gakiere, B. & Noctor, G. Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J. Exp. Bot. 59(2), 135–146. https://doi.org/10.1093/jxb/erm193 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 63.

    Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).

    PubMed 
    CAS 

    Google Scholar 

  • 64.

    Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5), 867–880 (1981).

    CAS 

    Google Scholar 

  • 65.

    Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G. & Sharma, S. Roles of enzymatic and non enzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30(3), 161–175 (2010).

    PubMed 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Resilience of countries to COVID-19 correlated with trust

    Understanding air pollution from space