in

Complex marine microbial communities partition metabolism of scarce resources over the diel cycle

  • 1.

    Ottesen, E. A. et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc. Natl Acad. Sci. USA 110, E488–E497 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Muñoz-Marín, M. D. C. et al. The transcriptional cycle is suited to daytime N2 fixation in the unicellular cyanobacterium “Candidatus Atelocyanobacterium thalassa” (UCYN-A). mBio 10, e02495-18 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Vislova, A., Sosa, O. A., Eppley, J. M., Romano, A. E. & DeLong, E. F. Diel oscillation of microbial gene transcripts declines with depth in oligotrophic ocean waters. Front. Microbiol. 10, 2191 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Harke, M. J. et al. Periodic and coordinated gene expression between a diazotroph and its diatom host. ISME J. 13, 118–131 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Hernández Limón, M. D. et al. Transcriptional patterns of Emiliania huxleyi in the North Pacific Subtropical Gyre reveal the daily rhythms of its metabolic potential.Environ. Microbiol. 22, 381–396 (2020).

    PubMed 

    Google Scholar 

  • 6.

    Becker, K. W. et al. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat. Commun. 9, 5179 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Frischkorn, K. R., Haley, S. T. & Dyhrman, S. T. Coordinated gene expression between Trichodesmium and its microbiome over day–night cycles in the North Pacific Subtropical Gyre. ISME J. 12, 997–1007 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Ottesen, E. A. et al. Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 345, 207–212 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Wilson, S. T. et al. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nat. Microbiol. 2, 17118 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Saito, M. A. et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc. Natl Acad. Sci. USA 108, 2184–2189 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Strenkert, D. et al. Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proc. Natl Acad. Sci. USA 116, 2374–2383 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Boysen, A. K. et al. Particulate metabolites and transcripts reflect diel oscillations of microbial activity in the surface ocean. mSystems 6, e00896-20 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    White, A. E., Barone, B., Letelier, R. M. & Karl, D. M. Productivity diagnosed from the diel cycle of particulate carbon in the North Pacific Subtropical Gyre: optically derived productivity. Geophys. Res. Lett. 44, 3752–3760 (2017).

    CAS 

    Google Scholar 

  • 14.

    DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    PubMed 

    Google Scholar 

  • 16.

    Coles, V. J. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Walbauer, J. R., Rodrigue, S., Coleman, M. L. & Chisholm, S. W. Transcriptome and proteome dynamics of a light–dark synchronized bacterial cell cycle.PLoS ONE 7, e43432 (2012).

    Google Scholar 

  • 18.

    Steiner, P. A. et al. Highly variable mRNA half-life time within marine bacterial taxa and functional genes. Environ. Microbiol. 21, 3873–3884 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Moran, M. A. et al. Sizing up metatranscriptomics. ISME J. 7, 237–243 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Tamames, J., Cobo-Simón, M. & Puente-Sánchez, F. Assessing the performance of different approaches for functional and taxonomic annotation of metagenomes. BMC Genomics 20, 960 (2019).

  • 21.

    DiTullio, G. R. & Laws, E. A. Diel periodicity of nitrogen and carbon assimilation in five species of marine phytoplankton: accuracy of methodology for predicting N-assimilation rates and N/C composition ratios. Mar. Ecol. Prog. Ser. 32, 123–132 (1986).

    CAS 

    Google Scholar 

  • 22.

    Granum, E., Kirkvold, S. & Myklestad, S. M. Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Mar. Ecol. Prog. Ser. 242, 83–94 (2002).

    CAS 

    Google Scholar 

  • 23.

    Lacour, T., Sciandra, A., Talec, A., Mayzaud, P. & Bernard, O. Diel variations of carbohydrates and neutral lipids in nitrogen-sufficient and nitrogen-starved cyclostat cultures of Isochrysis sp. J. Phycol. 48, 966–975 (2012).

    PubMed 

    Google Scholar 

  • 24.

    Follett, C. L., Dutkiewicz, S., Karl, D. M., Inomura, K. & Follows, M. J. Seasonal resource conditions favor a summertime increase in North Pacific diatom–diazotroph associations. ISME J. 12, 1543–1557 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Chen, W.-N. U. et al. Diel rhythmicity of lipid-body formation in a coral-Symbiodinium endosymbiosis. Coral Reefs 31, 521–534 (2012).

    Google Scholar 

  • 26.

    Zhou, X. & Mopper, K. Photochemical production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange. Mar. Chem. 56, 201–213 (1997).

    CAS 

    Google Scholar 

  • 27.

    Durham, B. P. et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean.Nat. Microbiol. 4, 1706–1715 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Lambert, S. et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 13, 388–401 (2019).

    PubMed 

    Google Scholar 

  • 29.

    Kolody, B. C. et al. Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME J. 13, 2817–2833 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Aylward, F. O. et al. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc. Natl Acad. Sci. USA 112, 5443–5448 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, e77 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Bork, P. et al. Tara Oceans studies plankton at planetary scale. Science 348, 873 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Morris, R. M. et al. Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time‐series Study site. Limnol. Oceanogr. 50, 1687–1696 (2005).

    CAS 

    Google Scholar 

  • 36.

    Mende, D. R. et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat. Microbiol. 2, 1367–1373 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    CAS 

    Google Scholar 

  • 39.

    Thaben, P. F. & Westermark, P. O. Detecting rhythms in time series with RAIN. J. Biol. Rhythms 29, 391–400 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Cuhel, R. L., Ortner, P. B. & Lean, D. R. S. Night synthesis of protein by algae. Limnol. Oceanogr. 29, 731–744 (1984).

    CAS 

    Google Scholar 

  • 41.

    Coesel, S. N. et al. Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proc. Natl Acad. Sci. USA 118, e2011038118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Bolay, P., Muro-Pastor, M. I., Florencio, F. J. & Klähn, S. The distinctive regulation of cyanobacterial glutamine synthetase. Life (Basel) 8, 52 (2018).

    CAS 

    Google Scholar 

  • 43.

    Karl, D. M., Church, M. J., Dore, J. E., Letelier, R. M. & Mahaffey, C. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. Proc. Natl Acad. Sci. USA 109, 1842–1849 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Berman, T. & Bronk, D. A. Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat. Microb. Ecol. 31, 279–305 (2003).

    Google Scholar 

  • 45.

    Lee, C. & Bada, J. L. Amino acids in equatorial Pacific Ocean water. Earth Planet. Sci. Lett. 26, 61–68 (1975).

    CAS 

    Google Scholar 

  • 46.

    Bada, J. L. & Lee, C. Decomposition and alteration of organic compounds dissolved in seawater. Mar. Chem. 5, 523–534 (1977).

    CAS 

    Google Scholar 

  • 47.

    Poretsky, R. S., Sun, S., Mou, X. & Moran, M. A. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ. Microbiol. 12, 616–627 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Berthelot, H. et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 13, 651–662 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).

    CAS 

    Google Scholar 

  • 50.

    Hu, S. K., Connell, P. E., Mesrop, L. Y. & Caron, D. A. A hard day’s night: diel shifts in microbial eukaryotic activity in the North Pacific Subtropical Gyre. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00351 (2018).

  • 51.

    Hannides, C. C. S., Popp, B. N., Choy, C. A. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol. Oceanogr. 58, 1931–1946 (2013).

    CAS 

    Google Scholar 

  • 52.

    Becker, K. W. et al. Combined pigment and metatranscriptomic analysis reveals highly synchronized diel patterns of phenotypic light response across domains in the open oligotrophic ocean.ISME J. 15, 520–533 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Mruwat, N. et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 15, 41–54 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Chesson, P. L. & Warner, R. R. Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 117, 923–943 (1981).

    Google Scholar 

  • 55.

    Shmida, A. & Ellner, S. Coexistence of plant species with similar niches. Vegetatio 58, 29–55 (1984).

    Google Scholar 

  • 56.

    Ellner, S. P., Snyder, R. E. & Adler, P. B. How to quantify the temporal storage effect using simulations instead of math. Ecol. Lett. 19, 1333–1342 (2016).

    PubMed 

    Google Scholar 

  • 57.

    Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).

    PubMed 

    Google Scholar 

  • 58.

    Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl Acad. Sci. USA 103, 12793–12798 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Cáceres, C. E. Temporal variation, dormancy, and coexistence: a field test of the storage effect. Proc. Natl Acad. Sci. USA 94, 9171–9175 (1997).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Padisák, J. Identification of relevant time-scales in non-equilibrium community dynamics: conclusions from phytoplankton surveys. N. Z. J. Ecol. 18, 169–176 (1994).

    Google Scholar 

  • 61.

    Anderies, J. M. & Beisner, B. E. Fluctuating environments and phytoplankton community structure: a stochastic model. Am. Nat.155, 556–569 (2000).

    PubMed 

    Google Scholar 

  • 62.

    Wagg, C. et al. Functional trait dissimilarity drives both species complementarity and competitive disparity. Funct. Ecol. 31, 2320–2329 (2017).

    Google Scholar 

  • 63.

    Bligh, E.G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Boysen, A. K., Heal, K. R., Carlson, L. T. & Ingalls, A. E. Best-matched internal standard normalization in liquid chromatography–mass spectrometry metabolomics applied to environmental samples. Anal. Chem. 90, 1363–1369 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Fountoulakis, M. & Lahm, H. W. Hydrolysis and amino acid composition analysis of proteins. J. Chromatogr. A 826, 109–134 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Popendorf, K. J., Fredricks, H. F. & Van Mooy, B. A. S. Molecular ion-independent quantification of polar glycerolipid classes in marine plankton using triple quadrupole MS. Lipids 48, 185–195 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Collins, J. R., Edwards, B. R., Fredricks, H. F. & Van Mooy, B. A. S. LOBSTAHS: an adduct-based lipidomics strategy for discovery and identification of oxidative stress biomarkers. Anal. Chem. 88, 7154–7162 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Hummel, J. et al. Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front. Plant Sci. 2, 54 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283–289 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Biller, S. J. et al. Prochlorococcus extracellular vesicles: molecular composition and adsorption to diverse microbes.Environ. Microbiol. https://doi.org/10.1111/1462-2920.15834 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 73.

    Aylward, F. O. et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc. Natl Acad. Sci. USA 114, 11446–11451 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13, 31 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Joshi, N. & Fass, J. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files. Version 1.33. GitHub https://github.com/najoshi/sickle (2015).

  • 77.

    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

    CAS 

    Google Scholar 

  • 78.

    Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Alexander, H. et al. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proc. Natl Acad. Sci. USA 112, E5972–E5979 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS 

    Google Scholar 

  • 82.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Meinicke, P. UProC: tools for ultra-fast protein domain classification. Bioinformatics 31, 1382–1388 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 84.

    Mende, D. R., Boeuf, D. & DeLong, E. F. Persistent core populations shape the microbiome throughout the water column in the North Pacific Subtropical Gyre. Front. Microbiol. 10, 2273 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    White, A. E. et al. Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA). J. Geophys. Res. Oceans 120, 7381–7399 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Borchers, H. W. pracma: Practical numerical math functions. R package version 2 https://cran.r-project.org/web/packages/pracma/index.html (2019).

  • 87.

    Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster analysis basics and extensions. R package version 1.56 (2012).

  • 88.

    Wehrens, R. & Buydens, L. M. C. Self- and super-organizing maps in R: the Kohonen package. J. Stat. Softw. 21, 1–19 (2007).

    Google Scholar 

  • 89.

    Hennig, C. fpc: Flexible procedures for clustering. R package version 2.2-9 (2010).

  • 90.

    Muratore, D. Code for complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Zenodo https://doi.org/10.5281/zenodo.3817416 (2020).


  • Source: Ecology - nature.com

    Bringing climate reporting to local newsrooms

    Cryofouling avoidance in the Antarctic scallop Adamussium colbecki