in

Rhizosphere bacteriome structure and functions

  • Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169, 587–596 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Muller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Jiang, Y. et al. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 109, 145–155 (2017).

    CAS 

    Google Scholar 

  • Garbeva, P., van Elsas, J. D. & van Veen, J. A. Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302, 19–32 (2008).

    CAS 

    Google Scholar 

  • Li, Y. et al. Rhizobacterial communities of five co-occurring desert halophytes. PeerJ 6, e5508 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Matthews, A., Pierce, S., Hipperson, H. & Raymond, B. Rhizobacterial community assembly patterns vary between crop species. Front. Microbiol. 10, 581 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez-Jaramillo, J. E., Mendes, R. & Raaijmakers, J. M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90, 635–644 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, J. et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 9, 4894 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Howard, M. M., Munoz, C. A., Kao-Kniffin, J. & Kessler, A. Soil microbiomes from fallow fields have species-specific effects on crop growth and pest resistance. Front. Plant Sci. 11, 1171 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, Y., Kuramae, E. E., de Hollander, M., Klinkhamer, P. G. & van Veen, J. A. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J. 11, 56–66 (2017).

    PubMed 

    Google Scholar 

  • Bakker, P. A., Berendsen, R. L., Doornbos, R. F., Wintermans, P. C. & Pieterse, C. M. The rhizosphere revisited: root microbiomics. Front. Plant Sci. 4, 165 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20, 124–140 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, Q. et al. Long-term chemical-only fertilization induces a diversity decline and deep selection on the soil bacteria. mSystems 5, e00337–20 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richter, A., Schöning, I., Kahl, T., Bauhus, J. & Ruess, L. Regional environmental conditions shape microbial community structure stronger than local forest management intensity. Ecol. Manag. 409, 250–259 (2018).

    Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Wallenstein, M. D. Managing and manipulating the rhizosphere microbiome for plant health: a systems approach. Rhizosphere 3, 230–232 (2017).

    Google Scholar 

  • Kuzyakov, Y. & Xu, X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. N. Phytol. 198, 656–669 (2013).

    CAS 

    Google Scholar 

  • Roller, B. R., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, L. et al. Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. ISME J. 11, 2874–2878 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nuccio, E. E. et al. Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME J. 14, 999–1014 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, K., Weisenhorn, P., Gilbert, J. A. & Chu, H. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol. Biochem. 125, 251–260 (2018).

    CAS 

    Google Scholar 

  • Fan, K. et al. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol. Biochem. 113, 275–284 (2017).

    CAS 

    Google Scholar 

  • Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baudoin, E., Benizri, E. & Guckert, A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem. 35, 1183–1192 (2003).

    CAS 

    Google Scholar 

  • Kuzyakov, Y. & Razavi, B. S. Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol. Biochem. 135, 343–360 (2019).

    CAS 

    Google Scholar 

  • Ren, Y. et al. Functional compensation dominates the assembly of plant rhizospheric bacterial community. Soil Biol. Biochem. 150, 107968 (2020).

    CAS 

    Google Scholar 

  • Chen, Y. et al. Organic amendments shift the phosphorus-correlated microbial co-occurrence pattern in the peanut rhizosphere network during long-term fertilization regimes. Appl. Soil Ecol. 124, 229–239 (2018).

    ADS 

    Google Scholar 

  • Atulba, S. L. et al. Evaluation of rice root oxidizing potential using digital image analysis. J. Korean Soc. Appl. Bi 58, 463–471 (2015).

    CAS 

    Google Scholar 

  • Schmidt, H., Eickhorst, T. & Tippkötter, R. Monitoring of root growth and redox conditions in paddy soil rhizotrons by redox electrodes and image analysis. Plant Soil 341, 221–232 (2011).

    CAS 

    Google Scholar 

  • Pausch, J., Zhu, B., Kuzyakov, Y. & Cheng, W. Plant inter-species effects on rhizosphere priming of soil organic matter decomposition. Soil Biol. Biochem. 57, 91–99 (2013).

    CAS 

    Google Scholar 

  • Finn, D., Kopittke, P. M., Dennis, P. G. & Dalal, R. C. Microbial energy and matter transformation in agricultural soils. Soil Biol. Biochem. 111, 176–192 (2017).

    CAS 

    Google Scholar 

  • Jones, R. T. et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3, 442–453 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, S. et al. Biogeographical distribution of bacterial communities in saline agricultural soil. Geoderma 361, 114095 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Eiler, A., Heinrich, F. & Bertilsson, S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 6, 330–342 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, J. et al. Generation of arbitrary two-point correlated directed networks with given modularity. Phys. Lett. A 374, 3129–3135 (2010).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Herron, P. M., Gage, D. J., Arango Pinedo, C., Haider, Z. K. & Cardon, Z. G. Better to light a candle than curse the darkness: illuminating spatial localization and temporal dynamics of rapid microbial growth in the rhizosphere. Front. Plant Sci. 4, 323 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Blagodatskaya, E., Blagodatsky, S., Anderson, T. H. & Kuzyakov, Y. Microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLoS ONE 9, e93282 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Mendes, L. W., Kuramae, E. E., Navarrete, A. A., van Veen, J. A. & Tsai, S. M. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 8, 1577–1587 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237, 173–195 (2001).

    CAS 

    Google Scholar 

  • Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 83, 184–199 (2015).

    CAS 

    Google Scholar 

  • Loeppmann, S., Blagodatskaya, E., Pausch, J. & Kuzyakov, Y. Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere. Soil Biol. Biochem. 92, 111–118 (2016).

    CAS 

    Google Scholar 

  • Ma, X. et al. Spatial patterns of enzyme activities in the rhizosphere: Effects of root hairs and root radius. Soil Biol. Biochem. 118, 69–78 (2018).

    CAS 

    Google Scholar 

  • Kroener, E., Zarebanadkouki, M., Kaestner, A. & Carminati, A. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils. Water Resour. Res. 50, 6479–6495 (2014).

    ADS 

    Google Scholar 

  • Carminati, A. Rhizosphere wettability decreases with root age: a problem or a strategy to increase water uptake of young roots? Front. Plant Sci. 4, 298 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Holz, M., Zarebanadkouki, M., Kaestner, A., Kuzyakov, Y. & Carminati, A. Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content. Plant Soil 423, 429–442 (2018).

    CAS 

    Google Scholar 

  • Tripathi, B. M. et al. Trends in taxonomic and functional composition of soil microbiome along a precipitation gradient in Israel. Microb. Ecol. 74, 168–176 (2017).

    PubMed 

    Google Scholar 

  • Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol. Cell 70, 768–784 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Kearns, P. J. & Shade, A. Trait-based patterns of microbial dynamics in dormancy potential and heterotrophic strategy: case studies of resource-based and post-press succession. ISME J. 12, 2575–2581 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microb. 66, 1328–1333 (2000).

    ADS 
    CAS 

    Google Scholar 

  • Schoeps, R. et al. Land-use intensity rather than plant functional identity shapes bacterial and fungal rhizosphere communities. Front. Micro. 9, 2711 (2018).

    Google Scholar 

  • Nemergut, D. R. et al. Decreases in average bacterial community rRNA operon copy number during succession. ISME J. 10, 1147–1156 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Cui, J. et al. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biol. Biochem. 142, 107720 (2020).

    CAS 

    Google Scholar 

  • Blagodatskaya, E. V., Blagodatsky, S. A., Anderson, T. H. & Kuzyakov, Y. Priming effects in chernozem induced by glucose and N in relation to microbial growth strategies. Appl. Soil Ecol. 37, 95–105 (2007).

    Google Scholar 

  • Lecomte, S. M. et al. Diversifying anaerobic respiration strategies to compete in the rhizosphere. Front. Environ. Sci. 6, 139 (2018).

    Google Scholar 

  • Herz, K. et al. Drivers of intraspecific trait variation of grass and forb species in German meadows and pastures. J. Veg. Sci. 28, 705–716 (2017).

    Google Scholar 

  • Ravenek, J. M. et al. Linking root traits and competitive success in grassland species. Plant Soil 407, 39–53 (2016).

    CAS 

    Google Scholar 

  • Larsen, J., Jaramillo-López, P., Nájera-Rincon, M. & González-Esquivel, C. Biotic interactions in the rhizosphere in relation to plant and soil nutrient dynamics. J. Soil Sci. Plant Nutr. 15, 449–463 (2015).

    Google Scholar 

  • Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C. & Moënne-Loccoz, Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321, 341–361 (2009).

    CAS 

    Google Scholar 

  • Ma, H.-K. et al. Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Appl. Soil Ecol. 150, 103468 (2020).

    Google Scholar 

  • Hannula, S. E. et al. Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nat. Commun 12, 5686 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, T. C., Walsh, K. A., Harris, J. A. & Moffett, B. F. Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol. 43, 1–11 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 6237 (2015).

    Google Scholar 

  • Noble, W. S. How does multiple testing correction work? Nat. Biotechnol. 27, 1135–1137 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, F., Zhong, J., Yang, Y., Scheuermann, R. H. & Zhou, J. Application of random matrix theory to biological networks. Phys. Lett. A 357, 420–423 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. ICWSM 8, 361–362 (2009).

    Google Scholar 

  • Peng, G. S. & Wu, J. Optimal network topology for structural robustness based on natural connectivity. Phys. A 443, 212–220 (2016).

    MathSciNet 

    Google Scholar 

  • Ruan, Y., Wang, T., Guo, S., Ling, N. & Shen, Q. Plant grafting shapes complexity and co-occurrence of rhizobacterial assemblages. Microb. Ecol. 80, 643–655 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, Y. et al. Molecular ecological network analyses. BMC Bioinforma. 13, 113 (2012).

    Google Scholar 

  • Guimerà, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ling, N. et al. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol. Biochem. 99, 137–149 (2016).

    CAS 

    Google Scholar 

  • Louca, S., Parfrey Laura, W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Google Scholar 

  • Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin: Statistical software for meta-analysis. Version 2.0. Sinauer (2000).

  • Viechtbauer, W. Conducting meta-analyses in R with the metafor Package. J. Stat. Softw. 36, 1–48 (2010).

    Google Scholar 

  • Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).

    Google Scholar 

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Morphological volatility precedes ecological innovation in early echinoderms

    Reconciling human health with the environment while struggling against the COVID-19 pandemic through improved face mask eco-design