in

Privately protected areas increase global protected area coverage and connectivity

  • Protected Planet: The World Database on Protected Areas (UNEP-WCMC and IUCN, accessed 2021); www.protectedplanet.net

  • Venter, O. et al. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2018).

    Article 

    Google Scholar 

  • Ward, M. et al. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563 (2020).

    CAS 
    Article 

    Google Scholar 

  • Adams, W. M. Against Extinction: The Story of Conservation (Earthscan, 2004).

  • Watson, J. E. M. Dudley, Segan, N. & Hockings, D. B. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    CAS 
    Article 

    Google Scholar 

  • Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).

    Article 

    Google Scholar 

  • Stolton, S. et al. The Futures of Privately Protected Areas (IUCN, 2014).

  • Protected Planet: The World Database on Protected Areas (UNEP-WCMC and IUCN, accessed November 2018); www.protectedplanet.net

  • Bingham, H. et al. Privately protected areas: advances and challenges in guidance, policy and documentation. Parks 23, 13–28 (2017).

    Article 

    Google Scholar 

  • Gallo, J., Pasquini, L., Reyers, B. & Cowling, R. M. The role of private conservation areas in biodiversity representation and target achievement within the Little Karoo region, South Africa. Biol. Conserv. 142, 446–454 (2009).

    Article 

    Google Scholar 

  • Schutz, J. Creating an integrated protected area network in Chile: a GIS assessment of ecoregion representation and the role of private protected areas. Environ. Conserv. 45, 269–277 (2018).

    Article 

    Google Scholar 

  • Ielyzaveta, I. M. & Cook, C. N. The role of privately protected areas in achieving biodiversity representation within a national protected area network. Conserv. Sci. Pract. 2, e307 (2020).

    Google Scholar 

  • Graves, R. A., Williamson, M. A., Belote, R. T. & Brandt, J. S. Quantifying the contribution of conservation easements to large‐landscape conservation. Biol. Conserv. 232, 83–96 (2019).

    Article 

    Google Scholar 

  • De Vos, A. & Cumming, G. S. The contribution of land tenure diversity to the spatial resilience of protected area networks. People Nat. 1, 331–346 (2019).

    Article 

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS 
    Article 

    Google Scholar 

  • Borrini-Feyerabend, G. et al. Governance of Protected Areas: From Understanding to Action (IUCN, 2013).

  • Lee, A. & Schultz, K. A. Comparing British and French colonial legacies: a discontinuity analysis of Cameroon. Q. J. Polit. Sci. 7, 365–410 (2012).

    Article 

    Google Scholar 

  • Acemoglu, D., Johnson, S. & Robinson, J. A. The colonial origins of comparative development: an empirical investigation. Am. Econ. Rev. 91, 1369–1401 (2001).

    Article 

    Google Scholar 

  • De Vos, A., Clements, H. S., Biggs, D. & Cumming, G. S. The dynamics of proclaimed privately protected areas in South Africa over 83 years. Conserv. Lett. 12, e12644 (2019).

    Google Scholar 

  • Conservation Programs (USDA, accessed 21 October 2021); https://www.ers.usda.gov/topics/natural-resources-environment/conservation-programs/

  • Zimmer, H. C., Mavromihalis, J., Turner, V. B., Moxham, C. & Liu, C. Native grasslands in the PlainsTender incentive scheme: conservation value, management and monitoring. Rangel. J. 32, 205–214 (2010).

    Article 

    Google Scholar 

  • A Global Standard for the Identification of Key Biodiversity Area (IUCN, 2021); https://portals.iucn.org/library/sites/library/files/documents/Rep-2016-005.pdf

  • Venter, O. et al. Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release (SEDAC, 2021); https://doi.org/10.7927/H46T0JQ4

  • Hoekstra, J. M., Boucher, T. M., Ricketts, T. H. & Roberts, C. Confronting a biome crisis: global disparities of habitat loss and protection. Ecol. Lett. 8, 23–29 (2005).

    Article 

    Google Scholar 

  • Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    CAS 
    Article 

    Google Scholar 

  • Bengtsson, J. et al. Grasslands—more important for ecosystem services than you might think. Ecosphere 10, e02582 (2019).

    Article 

    Google Scholar 

  • Working Together for Grasslands. How Ranchers and the WWF Help Protect the Northern Great Plains (WWF, 2021); https://www.worldwildlife.org/stories/working-together-for-grasslands

  • Henderson, K. A. et al. Landowner perceptions of the value of natural forest and natural grassland in a mosaic ecosystem in southern Brazil. Sustain. Sci. 11, 321–330 (2016).

    Article 

    Google Scholar 

  • Kamal, S., Grodzinska-Jurczak, M. & Brown, G. Conservation on private land: a review of global strategies with a proposed classification system. J. Environ. Plan. Manag. 58, 576–597 (2015).

    Article 

    Google Scholar 

  • Williamson, M. A., Schwartz, M. W. & Lubell, M. N. Spatially explicit analytical models for social–ecological systems. BioScience 68, 885–895 (2018).

    Google Scholar 

  • Watson, J. E. M. et al. Persistent disparities between recent rates of habitat conversion and protection and implications for future global conservation targets. Conserv. Lett. 9, 413–421 (2016).

    Article 

    Google Scholar 

  • Di Marco, M. et al. Quantifying the relative irreplaceability of important bird and biodiversity areas. Conserv. Biol. 30, 392–402 (2015).

    Article 

    Google Scholar 

  • Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    CAS 
    Article 

    Google Scholar 

  • Sanderson, E. W. et al. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52, 891–904 (2002).

    Article 

    Google Scholar 

  • Clements, H. S., Kerley, G. I. H., Cumming, G. S., De Vos, A. & Cook, C. N. Privately protected areas provide key opportunities for the regional persistence of large‐ and medium‐sized mammals. J. Appl. Ecol. 56, 537–546 (2018).

    Article 

    Google Scholar 

  • Song, P., Kim, G., Mayer, A., He, R. & Tian, G. Assessing the ecosystem services of various types of urban green spaces based on i-Tree Eco. Sustainability 12, 1630 (2020).

    CAS 
    Article 

    Google Scholar 

  • Trzyna, T. Urban Protected Areas: Profiles and Best Practice Guidelines (IUCN, 2014).

  • Li, E. et al. (2019) An urban biodiversity assessment framework that combines an urban habitat classification scheme and citizen science data. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00277 (2019).

  • Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    Article 

    Google Scholar 

  • Rissman, A. R. & Merenlender, A. M. The conservation contributions of conservation easements: analysis of the San Francisco Bay Area protected lands spatial database. Ecol. Soc. 13, 25 (2008).

    Article 

    Google Scholar 

  • Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets (CBD, 2011); https://www.cbd.int/sp/

  • Saura, S., Bastin, L., Battistella, L., Mandrici, A. & Dubois, G. Protected areas in the world’s ecoregions: how well connected are they? Ecol. Indic. 76, 144–158 (2017).

    Article 

    Google Scholar 

  • World Database of Key Biodiversity Areas (BirdLife International, accessed September 2020); http://www.keybiodiversityareas.org/site/requestgis

  • Saura, S. & Torné, J. Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 24, 135–139 (2009).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014). http://www.R-Project.org/

  • Milam, A. et al. in Protected Areas: Are They Safeguarding Biodiversity? (eds Joppa, L. et al.) 81–101 (Wiley-Blackwell, 2016).

  • Mason, C. et al. Telemetry reveals existing marine protected areas are worse than random for protecting the foraging habitat of threatened shy albatross. Divers. Distrib. 24, 1744–1755 (2018).

    Article 

    Google Scholar 

  • Lewis, E. et al. Dynamics in the global protected-area estate since 2004. Conserv. Biol. 33, 570–579 (2017).

    Article 

    Google Scholar 

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    CAS 
    Article 

    Google Scholar 

  • Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Nature 7, 113–118 (2017).

    Google Scholar 

  • Shumba, T. et al. Effectiveness of private land conservation areas in maintaining natural land cover and biodiversity intactness. Glob. Ecol. Conserv. 22, e00935 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    More rain, less often

    MIT Energy Conference focuses on climate’s toughest challenges