in

Complexity–stability trade-off in empirical microbial ecosystems

  • May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • May, R. M. & Mac Arthur, R. H. Niche overlap as a function of environmental variability. Proc. Natl Acad. Sci. USA 69, 1109–1113 (1972).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 2019).

  • Sinha, S. Complexity vs. stability in small-world networks. Phys. A 346, 147–153 (2005).

    Article 

    Google Scholar 

  • Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science 337, 349–351 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).

    Article 

    Google Scholar 

  • Qian, J. J. & Akçay, E. The balance of interaction types determines the assembly and stability of ecological communities. Nat. Ecol. Evol. 4, 356–365 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. in Systems Analysis Approach for Complex Global Challenges (eds Mensah, P. et al.) 209–248 (Springer, 2018).

  • Townsend, S. E., Haydon, D. T. & Matthews, L. On the generality of stability–complexity relationships in Lotka–Volterra ecosystems. J. Theor. Biol. 267, 243–251 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).

    Article 

    Google Scholar 

  • Yodzis, P. The stability of real ecosystems. Nature 289, 674–676 (1981).

    Article 

    Google Scholar 

  • Winemiller, K. O. Must connectance decrease with species richness? Am. Naturalist 134, 960–968 (1989).

    Article 

    Google Scholar 

  • Warren, P. H. Variation in food-web structure: the determinants of connectance. Am. Nat. 136, 689–700 (1990).

    Article 

    Google Scholar 

  • de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).

    Article 
    PubMed 

    Google Scholar 

  • Schmid-Araya, J. M. et al. Connectance in stream food webs. J. Anim. Ecol. 71, 1056–1062 (2002).

    Article 

    Google Scholar 

  • Neutel, A.-M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • James, A. et al. Constructing random matrices to represent real ecosystems. Am. Nat. 185, 680–692 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Jacquet, C. et al. No complexity–stability relationship in empirical ecosystems. Nat. Commun. 7, 12573 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, L. R. et al. A communal catalogue reveals earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207 (2012).

    CAS 
    Article 

    Google Scholar 

  • Fricker, A. M., Podlesny, D. & Fricke, W. F. What is new and relevant for sequencing-based microbiome research? A mini-review. J. Adv. Res. 19, 105–112 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sander, E. L., Wootton, J. T. & Allesina, S. Ecological network inference from long-term presence-absence data. Sci. Rep. 7, 7154 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinway, S. N., Biggs, M. B., Loughran Jr, T. P., Papin, J. A. & Albert, R. Inference of network dynamics and metabolic interactions in the gut microbiome. PLoS Comput. Biol. 11, e1004338 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bucci, V. et al. Mdsine: microbial dynamical systems inference engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PloS ONE 9, e102451 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerber, G. K., Onderdonk, A. B. & Bry, L. Inferring dynamic signatures of microbes in complex host ecosystems. PLoS Comput. Biol. 8, e1002624 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, H.-T., Gibson, T. E., Bashan, A. & Liu, Y.-Y. Inferring human microbial dynamics from temporal metagenomics data: pitfalls and lessons. BioEssays 39, 1600188 (2017).

    Article 

    Google Scholar 

  • David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buffie, C. G. et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to clostridium difficile-induced colitis. Infect. Immun. 80, 62–73 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dohlman, A. B. & Shen, X. Mapping the microbial interactome: statistical and experimental approaches for microbiome network inference. Exp. Biol. Med. 244, 445–458 (2019).

    CAS 
    Article 

    Google Scholar 

  • Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, D. et al. Microbiome multi-omics network analysis: statistical considerations, limitations, and opportunities. Front. Genet. 10, 995 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faust, K. Open challenges for microbial network construction and analysis. ISME J. 15, 3111–3118 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bashan, A. et al. Universality of human microbial dynamics. Nature 534, 259–262 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vila, J. C., Liu, Y.-Y. & Sanchez, A. Dissimilarity–overlap analysis of replicate enrichment communities. ISME J. 14, 2505–2513 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moitinho-Silva, L. et al. The sponge microbiome project. Gigascience 6, gix077 (2017).

    Article 
    PubMed Central 

    Google Scholar 

  • Swierts, T., Cleary, D. & de Voogd, N. Prokaryotic communities of Indo-Pacific giant barrel sponges are more strongly influenced by geography than host phylogeny. FEMS Microbiol. Ecol. 94, fiy194 (2018).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article 

    Google Scholar 

  • Suweis, S., Grilli, J., Banavar, J. R., Allesina, S. & Maritan, A. Effect of localization on the stability of mutualistic ecological networks. Nat. Commun. 6, 10179 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allesina, S. & Grilli, J. in Theoretical Ecology: Concepts and Applications (eds McCann, K. & Gellner, G.) Ch. 6 (Oxford Univ. Press, 2020).

  • Jayant, P. & Shnerb, N. M. How temporal environmental stochasticity affects species richness: destabilization neutralization and the storage effect. J. Theor. Biol. 539, 111053 (2022).

    Article 

    Google Scholar 

  • Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra52–132ra52 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  • Bunin, G. Ecological communities with Lotka-Volterra dynamics. Phys. Rev. E 95, 042414 (2017).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Machine learning, harnessed to extreme computing, aids fusion energy development

    From seawater to drinking water, with the push of a button