in

Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Duane, A., Castellnou, M. & Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 165, 43 (2021).

    ADS 
    Article 

    Google Scholar 

  • Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010). Adaptation of Forests and Forest Management to Changing Climate.

    Article 

    Google Scholar 

  • Franklin, J. F., Mitchell, R. J. & Palik, B. J. Natural disturbance and stand development principles for ecological forestry. General Technical Report. NRS-19. Newtown Square, PA: US Department of Agriculture, Forest Service, Northern Research Station. 44. p. 19 (2007).

  • Westoby, M., Jurado, E. & Leishman, M. Comparative evolutionary ecology of seed size. Trends Ecol. Evol. 7, 368–372 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).

    Article 

    Google Scholar 

  • Lord, J., Westoby, M. & Leishman, M. Seed size and phylogeny in six temperate floras: Constraints, niche conservatism, and adaptation. Am. Nat. 146, 349–364 (1995).

    Article 

    Google Scholar 

  • Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).

    Article 

    Google Scholar 

  • Tautenhahn, S. et al. On the biogeography of seed mass in germany – distribution patterns and environmental correlates. Ecography 31, 457–468 (2008).

    Article 

    Google Scholar 

  • Lidgard, S. & Crane, P. R. Quantitative analyses of the early angiosperm radiation. Nature 331, 344–346 (1988).

    ADS 
    Article 

    Google Scholar 

  • Crisp, M. D. & Cook, L. G. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytol. 192, 997–1009 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stearns, S. C. Life-history tactics: a review of the ideas. Quart. Rev. Biol. 51, 3–47 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).

    Article 

    Google Scholar 

  • Clark, J. S., LaDeau, S. & Ibanez, I. Fecundity of trees and the colonization-competition hypothesis. Ecol. Monogr. 74, 415–442 (2004).

    Article 

    Google Scholar 

  • Salguero-Gómez, R. et al. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Thomas, S. C. Age-Related Changes in Tree Growth and Functional Biology: The Role of Reproduction, p. 33-64 (Springer Netherlands, 2011).

  • Wenk, E. H. & Falster, D. S. Quantifying and understanding reproductive allocation schedules in plants. Ecol. Evol. 5, 5521–5538 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Turnbull, L. A., Rees, M. & Crawley, M. J. Seed mass and the competition/colonization trade-off: a sowing experiment. J. Ecol. 87, 899–912 (1999).

    Article 

    Google Scholar 

  • Moles, A., Falster, D., Leishman, M. & Westoby, M. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. J. Ecol. 92, 384–396 (2004).

    Article 

    Google Scholar 

  • Qiu, T. et al. Is there tree senescence? the fecundity evidence. Proc. Natl Acad. Sci. USA 118, e2106130118 (2021).

  • Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    Article 

    Google Scholar 

  • Henery, M. L. & Westoby, M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92, 479–490 (2001).

    Article 

    Google Scholar 

  • Turnbull, L. A., Coomes, D., Hector, A. & Rees, M. Seed mass and the competition/colonization trade-off: competitive interactions and spatial patterns in a guild of annual plants. J. Ecol. 92, 97–109 (2004).

    Article 

    Google Scholar 

  • Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Poorter, L. et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 185, 481–492 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Hanley, M. E., Cook, B. I. & Fenner, M. Climate variation, reproductive frequency and acorn yield in english oaks. J. Plant Ecol. 12, 542–549 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kattge, J. et al. Try plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    ADS 
    Article 

    Google Scholar 

  • Ran, E., Arnon, D., Alon, B.-G., Amnon, S. & Uri, Y. Flowering and fruit set of olive trees in response to nitrogen, phosphorus, and potassium. J. Am. Soc. Hortic. Sci. Am. Soc. Hortic. Sci. 133, 639–647 (2008).

    Article 

    Google Scholar 

  • Fernández-Martínez, M., Vicca, S., Janssens, I. A., Espelta, J. M. & Peñuelas, J. The role of nutrients, productivity and climate in determining tree fruit production in european forests. New Phytol. 213, 669–679 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Fortier, R. & Wright, S. J. Nutrient limitation of plant reproduction in a tropical moist forest. Ecology 102, e03469 (2021).

  • Canham, C. D., Ruscoe, W. A., Wright, E. F. & Wilson, D. J. Spatial and temporal variation in tree seed production and dispersal in a new zealand temperate rainforest. Ecosphere 5, art49 (2014).

    Article 

    Google Scholar 

  • Pérez-Ramos, I. M., Aponte, C., García, L. V., Padilla-Díaz, C. M. & Marañón, T. Why is seed production so variable among individuals? a ten-year study with oaks reveals the importance of soil environment. PLoS ONE 9, e115371 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).

    ADS 
    Article 

    Google Scholar 

  • Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, 1–33 (2005).

    Article 
    CAS 

    Google Scholar 

  • Fisher, R. A. et al. Vegetation demographics in earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).

    ADS 
    Article 

    Google Scholar 

  • Hanbury-Brown, A., Ward, R. & Kueppers, L. M. Future forests within earth system models: regeneration processes critical to prediction. New Phytol. in press https://doi.org/10.1111/nph.18131 (2022).

  • Stiles, W. C. & Reid, W. S. Orchard nutrition management. Inf. Bull. (1991). https://ecommons.cornell.edu/bitstream/handle/1813/3305/Orchard%20Nutrition%20Management.pdf?sequence=2&isAllowed=y.

  • Schlesinger, W. H. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry 154, 427–432 (2021).

    Article 

    Google Scholar 

  • Neilsen, D. & Neilsen, G. Efficient use of nitrogen and water in high-density apple orchards. HortTechnology 12, 19 (2002).

    Article 

    Google Scholar 

  • Rubio Ames, Z., Brecht, J. K. & Olmstead, M. A. Nitrogen fertilization rates in a subtropical peach orchard: effects on tree vigor and fruit quality. J. Sci. Food Agric. 100, 527–539 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Elser, J. J. et al. Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett. 6, 936–943 (2003).

    Article 

    Google Scholar 

  • Seyednasrollah, B. & Clark, J. S. Where resource-acquisitive species are located: the role of habitat heterogeneity. Geophys. Res. Lett. 47, e2020GL087626 (2020).

  • Rosecrance, R. C., Weinbaum, S. A. & Brown, P. H. Alternate bearing affects nitrogen, phosphorus, potassium and starch storage pools in mature pistachio trees. Ann. Bot. 82, 463–470 (1998).

    Article 

    Google Scholar 

  • Sala, A., Hopping, K., McIntire, E. J. B., Delzon, S. & Crone, E. E. Masting in whitebark pine (pinus albicaulis) depletes stored nutrients. New Phytol. 196, 189–199 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • LaDeau, S. L. & Clark, J. S. Rising co2 levels and the fecundity of forest trees. Science 292, 95–8 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Callahan, H. S., Del Fierro, K., Patterson, A. E. & Zafar, H. Impacts of elevated nitrogen inputs on oak reproductive and seed ecology. Glob. Change Biol. 14, 285–293 (2008).

    ADS 
    Article 

    Google Scholar 

  • Lambers, H. & Poorter, H. Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences, vol. 23, 187-261 (Academic Press, 1992).

  • Hengl, T. et al. Soilgrids250m: global gridded soil information based on machine learning. PLoS ONE 12, 1–40 (2017).

    Article 
    CAS 

    Google Scholar 

  • Sharma, A., Weindorf, D. C., Wang, D. D. & Chakraborty, S. Characterizing soils via portable x-ray fluorescence spectrometer: 4. cation exchange capacity (cec). Geoderma 239, 130–134 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Hazelton, P. & Murphy, B. Interpreting Soil Test Results: What Do All The Numbers Mean? (CSIRO publishing, 2016).

  • Chowdhury, S. et al. Chapter Two – Role Of Cultural And Nutrient Management Practices In Carbon Sequestration In Agricultural Soil, vol. 166, 131-196 (Academic Press, 2021).

  • Clark, J. S., Nuñez, C. L. & Tomasek, B. Foodwebs based on unreliable foundations: spatiotemporal masting merged with consumer movement, storage, and diet. Ecol. Monogr. 89, e01381 (2019).

    Article 

    Google Scholar 

  • Burns, R. M. Silvics Of North America (US Department of Agriculture, Forest Service, 1990).

  • Koenig, W. D. & Knops, J. M. H. Seed-crop size and eruptions of north american boreal seed-eating birds. J. Anim. Ecol. 70, 609–620 (2001).

    Article 

    Google Scholar 

  • Greene, D. F. & Johnson, E. A. Estimating the mean annual seed production of trees. Ecology 75, 642–647 (1994).

    Article 

    Google Scholar 

  • Lord, J. M. & Westoby, M. Accessory costs of seed production and the evolution of angiosperms. Evol. Int. J. Org. Evol. 66, 200–210 (2012).

    Article 

    Google Scholar 

  • Hulme, P. & Benkman, C. Granivory. vol. 23, 132-154 (Oxford: Blackwell, 2002).

  • Bond, W. J. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227–249 (1989).

    Article 

    Google Scholar 

  • Brodribb, T. J. & Feild, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Davies, T. J. et al. Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl Acad. Sci. USA 101, 1904–1909 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Berendse, F. & Scheffer, M. The angiosperm radiation revisited, an ecological explanation for darwin’s ‘abominable mystery’. Ecol. Lett. 12, 865–872 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barrett, S. C. H. Influences of clonality on plant sexual reproduction. Proc. Natl Acad. Sci. USA 112, 8859–8866 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a co2-enriched atmosphere. Nature 411, 469–472 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to co2. Nature 440, 922–925 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nat. Ecol. Evol. 3, 400–406 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Elser, J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).

    Article 

    Google Scholar 

  • Niklas, K. J., Owens, T., Reich, P. B. & Cobb, E. D. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol. Lett. 8, 636–642 (2005).

    Article 

    Google Scholar 

  • Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Weinbaum, S. A., Johnson, R. S. & DeJong, T. M. Causes and consequences of overfertilization in orchards. HortTechnology 2, 112b (1992).

    Article 

    Google Scholar 

  • Fernandez-Escobar, R. et al. Olive oil quality decreases with nitrogen over-fertilization. HortScience 41, 215 (2006).

    CAS 
    Article 

    Google Scholar 

  • Han, Q., Kabeya, D., Iio, A. & Kakubari, Y. Masting in fagus crenata and its influence on the nitrogen content and dry mass of winter buds. Tree Physiol. 28, 1269–1276 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Pettigrew, W. T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133, 670–681 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leeper, A. C., Lawrence, B. A. & LaMontagne, J. M. Plant-available soil nutrients have a limited influence on cone production patterns of individual white spruce trees. Oecologia 194, 101–111 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Chapin, F. S., Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993).

    Article 

    Google Scholar 

  • Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Brodribb, T. J., Pittermann, J. & Coomes, D. A. Elegance versus speed: Examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. 173, 673–694 (2012).

    Article 

    Google Scholar 

  • Clark, J. S., Macklin, E. & Wood, L. Stages and spatial scales of recruitment limitation in southern appalachian forests. Ecol. Monogr. 68, 213–235 (1998).

    Article 

    Google Scholar 

  • McEuen, A. B. & Curran, L. M. Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Ecology 85, 507–518 (2004).

    Article 

    Google Scholar 

  • Emsweller, L. N., Gorchov, D. L., Zhang, Q., Driscoll, A. G. & Hughes, M. R. Seed rain and disturbance impact recruitment of invasive plants in upland forest. Invasive Plant Sci. Manag. 11, 69–81 (2018).

    Article 

    Google Scholar 

  • Lindgren, s, Eriksson, O. & Moen, J. The impact of disturbance and seed availability on germination of alpine vegetation in the scandinavian mountains. Arct. Antarct. Alp. Res. 39, 449–454 (2007).

    Article 

    Google Scholar 

  • Cai, W. H., Liu, Z., Yang, Y. Z. & Yang, J. Does environment filtering or seed limitation determine post-fire forest recovery patterns in boreal larch forests? Front. Plant Sci. 9, 1318 (2018).

  • Darwin, C. On the Origin of Species (John Murray, 1859).

  • Black, M. Darwin and seeds. Seed Sci. Res. 19, 193–199 (2009).

    Article 

    Google Scholar 

  • FAO. Global forest resources assessment 2020-key findings. un food and agriculture organization. Report (2020).

  • Payn, T. et al. Changes in planted forests and future global implications. For. Ecol. Manag. 352, 57–67 (2015).

    Article 

    Google Scholar 

  • Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the united states. Glob. Change Biol. 22, 2329–2352 (2016).

    ADS 
    Article 

    Google Scholar 

  • Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of northern hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).

    Article 

    Google Scholar 

  • Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • North, M. P. et al. Tamm review: reforestation for resilience in dry western u.s. forests. For. Ecol. Manag. 432, 209–224 (2019).

    Article 

    Google Scholar 

  • Seidl, R., Rammer, W. & Spies, T. A. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol. Appl. 24, 2063–2077 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Serra-Diaz, J. M. et al. Averaged 30 year climate change projections mask opportunities for species establishment. Ecography 39, 844–845 (2016).

    Article 

    Google Scholar 

  • Davis, F. W. et al. Shrinking windows of opportunity for oak seedling establishment in southern california mountains. Ecosphere 7, e01573 (2016).

    Google Scholar 

  • LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Clark, J. S. et al. Continent-wide tree fecundity driven by indirect climate effects. Nat. Commun. 12, 1242 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brady, N. C., Weil, R. R. & Weil, R. R. The Nature And Properties Of Soils, vol. 13 (Prentice Hall Upper Saddle River, 2008).

  • Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007). https://doi.org/10.1029/2005RG000183.

  • Clark, J. S. Landscape interactions among nitrogen mineralization, species composition, and long-term fire frequency. Biogeochemistry 11, 1–22 (1990).

    Article 

    Google Scholar 

  • Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Change Biol. 20, 1979–1991 (2014).

    ADS 
    Article 

    Google Scholar 

  • Begueria, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (spei) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).

    Article 

    Google Scholar 

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schneider, R., Calama, R. & Martin-Ducup, O. Understanding tree-to-tree variations in stone pine (pinus pinea l.) cone production using terrestrial laser scanner. Remote Sens. 12, 173 (2020).

    Article 

    Google Scholar 

  • Gavranović, A., Bogdan, S., Lanšćak, M., Čehulić, I. & Ivanković, M. Seed yield and morphological variations of beechnuts in four european beech (fagus sylvatica l.) populations in croatia. South-East Eur. For. 9, 17–27 (2018).

    Article 

    Google Scholar 

  • Maitner, B. S. et al. The bien r package: a tool to access the botanical information and ecology network (bien) database. Methods Ecol. Evol. 9, 373–379 (2018).

    Article 

    Google Scholar 

  • Clark, J. S., Silman, M., Kern, R., Macklin, E. & HilleRisLambers, J. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80, 1475–1494 (1999).

    Article 

    Google Scholar 

  • LePage, P. T., Canham, C. D., Coates, K. D. & Bartemucci, P. Seed abundance versus substrate limitation of seedling recruitment in northern temperate forests of british columbia. Can. J. For. Res. 30, 415–427 (2000).

    Article 

    Google Scholar 

  • Clark, J. S., LaDeau, S. & Ibanez, I. Fecundity of trees and the colonization-competition hypothesis. Ecol. Monogr. 74, 415–442 (2004).

    Article 

    Google Scholar 

  • Muller-Landau, H. C., Wright, S. J., Calderon, O., Condit, R. & Hubbell, S. P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol. 96, 653–667 (2008).

    Article 

    Google Scholar 

  • Jones, F. A. & Muller-Landau, H. C. Measuring long-distance seed dispersal in complex natural environments: an evaluation and integration of classical and genetic methods. J. Ecol. 96, 642–652 (2008).

    Article 

    Google Scholar 

  • Clark, J. S. Individuals and the variation needed for high species diversity in forest trees. Science 327, 1129–1132 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Clark, J. S. et al. High-dimensional coexistence based on individual variation: a synthesis of evidence. Ecol. Monogr. 80, 569–608 (2010).

    Article 

    Google Scholar 

  • Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Change Biol. 20, 1979–91 (2014).

    ADS 
    Article 

    Google Scholar 

  • Minor, D. M. & Kobe, R. K. Fruit production is influenced by tree size and size-asymmetric crowding in a wet tropical forest. Ecol. Evol. 9, 1458–1472 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Revell, L. J. phytools: an r package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article 

    Google Scholar 

  • Martins, E. P. & Hansen, T. F. Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149, 646–667 (1997).

    Article 

    Google Scholar 

  • Tung Ho, L. S. & Ané, C. A linear-time algorithm for gaussian and non-gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).

    Article 

    Google Scholar 

  • Clark, J. S. Data from: continent-wide tree fecundity driven by indirect climate effects https://doi.org/10.7924/r4348ph5t (2020).


  • Source: Ecology - nature.com

    Engineers use artificial intelligence to capture the complexity of breaking waves

    Food deprivation alters reproductive performance of biocontrol agent Hadronotus pennsylvanicus