in

Temporal patterns in the soundscape of a Norwegian gateway to the Arctic

  • Ellison, W. T., Southall, B. L., Clark, C. W. & Frankel, A. S. A new context-based approach to assess marine mammal behavioral responses to anthropogenic sounds. Conserv. Biol. 26, 21–28 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Williams, R., Clark, C. W., Ponirakis, D. & Ashe, E. Acoustic quality of critical habitats for three threatened whale populations. Anim. Conserv. 17, 174–185 (2014).

    Article 

    Google Scholar 

  • Halliday, W. D., Pine, M. K. & Insley, S. J. Underwater noise and arctic marine mammals: Review and policy recommendations. Environ. Rev. 28, 438–448 (2020).

    Article 

    Google Scholar 

  • Kvadsheim, P. H. et al. Impact of Anthropogenic Noise on the Marine Environment: Status of Knowledge and Management (Springer, 2020).

    Google Scholar 

  • Weilgart, L. S. & Whitehead, H. Distinctive vocalizations from mature male sperm whales (Physeter macrocephalus). Can. J. Zool. 66, 1931–1937 (1988).

    Article 

    Google Scholar 

  • Simon, M., Stafford, K. M., Beedholm, K., Lee, C. M. & Madsen, P. T. Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Am. 128, 3200 (2010).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Alves, D., Amorim, M. C. P. & Fonseca, P. J. Assessing acoustic communication active space in the Lusitanian toadfish. J. Exp. Biol. 219, 1122–1129 (2016).

    PubMed 

    Google Scholar 

  • Linnenschmidt, M., Teilmann, J., Akamatsu, T., Dietz, R. & Miller, L. A. Biosonar, dive, and foraging activity of satellite tracked harbor porpoises (Phocoena phocoena). Mar. Mamm. Sci. 29, E77–E97 (2013).

    Article 

    Google Scholar 

  • Giorli, G. & Goetz, K. T. Foraging activity of sperm whales (Physeter macrocephalus) off the east coast of New Zealand. Sci. Rep. 9, 12182 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Baumgartner, M. F. & Fratantoni, D. M. Diel periodicity in both sei whale vocalization rates and the vertical migration of their copepod prey observed from ocean gliders. Limnol. Oceanogr. 53, 2197–2209 (2008).

    ADS 
    Article 

    Google Scholar 

  • Urazghildiiev, I. R. & Van Parijs, S. M. Automatic grunt detector and recognizer for Atlantic cod (Gadus morhua). J. Acoust. Soc. Am. 139, 2532–2540 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Ladich, F. Ecology of sound communication in fishes. Fish Fish. 20, 552–563 (2019).

    Article 

    Google Scholar 

  • Radford, C. A., Stanley, J. A., Simpson, S. D. & Jeffs, A. G. Juvenile coral reef fish use sound to locate habitats. Coral Reefs 30, 295–305 (2011).

    ADS 
    Article 

    Google Scholar 

  • Pierpoint, C. Harbour porpoise (Phocoena phocoena) foraging strategy at a high energy, near-shore site in south-west Wales, UK. J. Mar. Biol. Assoc. UK 88, 1167–1173 (2008).

    Article 

    Google Scholar 

  • Pijanowski, B. C. et al. Soundscape ecology: The science of sound in the landscape. Bioscience 61, 203–216 (2011).

    Article 

    Google Scholar 

  • Stanley, J. A., Radford, C. A. & Jeffs, A. G. Location, location, location: Finding a suitable home among the noise. Proc. R. Soc. B Biol. Sci. 279, 3622–3631 (2012).

    Article 

    Google Scholar 

  • Buscaino, G. et al. Temporal patterns in the soundscape of the shallow waters of a Mediterranean marine protected area. Sci. Rep. 6, 1–13 (2016).

    Article 
    CAS 

    Google Scholar 

  • Gasc, A., Francomano, D., Dunning, J. B. & Pijanowski, B. C. Future directions for soundscape ecology: The importance of ornithological contributions. Auk 134, 215–228 (2017).

    Article 

    Google Scholar 

  • Putland, R. L., Constantine, R. & Radford, C. A. Exploring spatial and temporal trends in the soundscape of an ecologically significant embayment. Sci. Rep. 7, 5713 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pieretti, N., LoMartire, M., Farina, A. & Danovaro, R. Marine soundscape as an additional biodiversity monitoring tool: A case study from the Adriatic Sea (Mediterranean Sea). Ecol. Indic. 83, 13–20 (2017).

    Article 

    Google Scholar 

  • Gillespie, D., Palmer, L., Macaulay, J., Sparling, C. & Hastie, G. Passive acoustic methods for tracking the 3D movements of small cetaceans around marine structures. PLoS ONE 15, e0229058 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Van Parijs, S. et al. Management and research applications of real-time and archival passive acoustic sensors over varying temporal and spatial scales. Mar. Ecol. Prog. Ser. 395, 21–36 (2009).

    ADS 
    Article 

    Google Scholar 

  • Warren, V. E., McPherson, C., Giorli, G., Goetz, K. T. & Radford, C. A. Marine soundscape variation reveals insights into baleen whales and their environment: a case study in central New Zealand. R. Soc. Open Sci. 8, 201503 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ahonen, H. et al. The underwater soundscape in western Fram Strait: Breeding ground of Spitsbergen’s endangered bowhead whales. Mar. Pollut. Bull. 123, 97–112 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hildebrand, J. A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009).

    ADS 
    Article 

    Google Scholar 

  • Ross, D. Ship sources of ambient noise. IEEE J. Ocean. Eng. 30, 257–261 (2005).

    ADS 
    Article 

    Google Scholar 

  • Popper, A. N. & Hawkins, A. The Effects of Noise on Aquatic Life Vol. 730 (Springer, 2012).

    Book 

    Google Scholar 

  • Hubert, J. et al. Effects of broadband sound exposure on the interaction between foraging crab and shrimp: A field study. Environ. Pollut. 243, 1923–1929 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Weilgart, L. The Impact of Ocean Noise Pollution on Fish and Invertebrates (Springer, 2018).

    Google Scholar 

  • Kvadsheim, H., Sivle, L. D., Hansen, R. R. & Karlsen, H. E. Effekter av Menneskeskapt støy på Havmiljø Rapport til Miljødirektoratet om Kunnskapsstatus FFI-RAPPORT. (2017).

  • Parks, S. E., Johnson, M., Nowacek, D. & Tyack, P. L. Individual right whales call louder in increased environmental noise. Biol. Lett. 7, 33–35 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Meh, F. et al. Humpback whales Megaptera novaeangliae alter calling behavior in response to natural sounds and vessel noise. Mar. Ecol. Prog. Ser. 607, 251–268 (2018).

    Article 

    Google Scholar 

  • Leroy, E. C., Royer, J.-Y., Bonnel, J. & Samaran, F. Long-term and seasonal changes of large whale call frequency in the Southern Indian ocean. J. Geophys. Res. Ocean. 123, 8568–8580 (2018).

    ADS 
    Article 

    Google Scholar 

  • Parks, S. E., Clark, C. W. & Tyack, P. L. Short- and long-term changes in right whale calling behavior: The potential effects of noise on acoustic communication. J. Acoust. Soc. Am. 122, 3725–3731 (2007).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Clark, C. et al. Acoustic masking in marine ecosystems: intuitions, analysis, and implication. Mar. Ecol. Prog. Ser. 395, 201–222 (2009).

    ADS 
    Article 

    Google Scholar 

  • PAME. Underwater Noise in the Arctic: A State of Knowledge Report (PAME, 2019).

    Google Scholar 

  • Beszczynska-Möller, A., Woodgate, R., Lee, C., Melling, H. & Karcher, M. A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean. Oceanography 24, 82–99 (2011).

    Article 

    Google Scholar 

  • Ramm, T. Hungry During Migration? Humpback Whale Movement from the Barents Sea to a Feeding Stopover in Northern Norway Revealed by Photo-ID Analysis. (MSc thesis. UiT The Arctic University of Norway, 2020).

  • Broms, F. et al. Recent research on the migratory destinations of humpback whales (Megaptera novaeangliae) from a mid-winter feeding stop-over area in Northern Norway. in Recent research on the migratory destinations of humpback whales (Megaptera novaeangliae) from a mid-winter feeding stop-over area in Northern Norway (ed. Wenzel, F. W.) (European Cetacean Society Special Publication Series, 2015).

  • Aniceto, A. S. et al. Arctic marine data collection using oceanic gliders: Providing ecological context to cetacean vocalizations. Front. Mar. Sci. 7, 547 (2020).

    Article 

    Google Scholar 

  • Jourdain, E. & Vongraven, D. Humpback whale (Megaptera novaeangliae) and killer whale (Orcinus orca) feeding aggregations for foraging on herring (Clupea harengus) in Northern Norway. Mamm. Biol. 86, 27–32 (2017).

    Article 

    Google Scholar 

  • Christiansen, J. S., Mecklenburg, C. W. & Karamushko, O. V. Arctic marine fishes and their fisheries in light of global change. Glob. Chang. Biol. 20, 352–359 (2014).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Rødland, E. S. & Bjørge, A. Residency and abundance of sperm whales (Physeter macrocephalus) in the Bleik Canyon, Norway. Mar. Biol. Res. 11, 974–982 (2015).

    Article 

    Google Scholar 

  • Nøttestad, L. et al. Prey selection of offshore killer whales Orcinus orca in the Northeast Atlantic in late summer: spatial associations with mackerel. Mar. Ecol. Prog. Ser. 499, 275–283 (2014).

    ADS 
    Article 

    Google Scholar 

  • Bjørge, A., Aarefjord, H., Kaarstad, S., Kleivane, L. & Øien, N. Harbour porpoise (Phocoena phocoena) in Norwegian waters (Springer, 1991).

    Google Scholar 

  • Gjøseter, H. et al. Fisken og Havet. https://doi.org/10.1111/maec.12075 (2010).

    Article 

    Google Scholar 

  • ICES. ICES Report on Ocean Climate 2009 No.304. (2010).

  • ICES. Report of the Working Group on Widely Distributed Stocks (WGWIDE). (2010).

  • Rey, F. Phytoplankton: The grass of the sea. In The Norwegian Sea Ecosystem (ed. Skjoldal, H. R.) 97–136 (Academic Press, 2004).

    Google Scholar 

  • Huse, G. et al. Effects of interactions between fish populations on ecosystem dynamics in the Norwegian Sea : Results of the INFERNO project. Mar. Biol. Res. 8, 415–419 (2012).

    Article 

    Google Scholar 

  • Godø, O. R., Johnsen, S. & Torkelsen, T. The LoVe ocean observatory is in operation. Mar. Technol. Soc. J. 48, 24–30 (2014).

    Article 

    Google Scholar 

  • Cooke, J. G. Balaenoptera physalus. The IUCN Red List of Threatened Species: e.T2478A50349982 (2018).

  • Leonard, D. & Øien, N. Estimated abundances of Cetacean species in the Northeast Atlantic from Norwegian Shipboard Surveys Conducted in 2014–2018. NAMMCO Sci. Publ. 11, 4694 (2020).

    Google Scholar 

  • Øygard, S. H. Simulations of Acoustic Transmission Loss of Fin Whale Calls Reaching the LoVe Ocean Observatory. (MSc thesis. University of Bergen, 2018).

  • Steiner, L. et al. A link between male sperm whales, Physeter macrocephalus, of the Azores and Norway. J. Mar. Biol. Assoc. UK 92, 1751–1756 (2012).

    Article 

    Google Scholar 

  • Olafsen, T., Winther, U., Olsen, Y. & Skjermo, J. Verdiskaping Basert på Produktive hav i 2050 1–76 (Springer, 2012).

    Google Scholar 

  • Wenz, G. M. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am. 34, 1936–1956 (1962).

    ADS 
    Article 

    Google Scholar 

  • Klinck, H. et al. Seasonal presence of cetaceans and ambient noise levels in polar waters of the North Atlantic. J. Acoust. Soc. Am. 132, 176–181 (2012).

    Article 

    Google Scholar 

  • Burnham, R. E., Duffus, D. A. & Mouy, X. The presence of large whale species in Clayoquot Sound and its offshore waters. Cont. Shelf Res. 177, 15–23 (2019).

    ADS 
    Article 

    Google Scholar 

  • Romagosa, M. et al. Baleen whale acoustic presence and behaviour at a Mid-Atlantic migratory habitat, the Azores Archipelago. Sci. Rep. 10, 61489 (2020).

    Google Scholar 

  • Tervo, O. Acoustic Behaviour of Bowhead Whales Balaena mysticetus in Disko Bay, Western Greenland. PhD thesis. (2011).

  • Magnúsdóttir, E. E. & Lim, R. Subarctic singers: Humpback whale (Megaptera novaeangliae) song structure and progression from an Icelandic feeding ground during winter. PLoS ONE 14, e0210057 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Samaran, F. et al. Seasonal and geographic variation of southern blue whale subspecies in the Indian Ocean. PLoS ONE 8, e70 (2013).

    Article 

    Google Scholar 

  • Norris, T. F., Dunleavy, K. J., Yack, T. M. & Ferguson, E. L. Estimation of minke whale abundance from an acoustic line transect survey of the Mariana Islands. Mar. Mammal Sci. 33, 574 (2017).

    Article 

    Google Scholar 

  • Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. Camb. Philos. Soc. 88, 287–309 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Dunlop, R. A. The effects of vessel noise on the communication network of humpback whales. R. Soc. Open Sci. 6, 190967 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Christensen, I., Haug, T. & Øien, N. A review of feeding and reproduction in large baleen whales (Mysticeti) and sperm whales Physeter macrocephalus in Norwegian and adjacent waters. ICES J. Mar. Sci. 49, 341–355 (1992).

    Article 

    Google Scholar 

  • Aniceto, A. S. et al. Monitoring marine mammals using unmanned aerial vehicles: quantifying detection certainty. Ecosphere 9, e02122 (2018).

    Article 

    Google Scholar 

  • Pedersen, G., Storheim, E., Sivle, L. D., Godø, O. R. & Ødegaard, L. A. Concurrent passive and active acoustic observations of high-latitude shallow foraging sperm whales (Physeter macrocephalus) and mesopelagic prey layer. J. Acoust. Soc. Am. 141, 1–10 (2017).

    Article 

    Google Scholar 

  • Vogel, E. F. The influence of herring (Clupea harengus) biomass and distribution on killer whale (Orcinus orca) movements on the Norwegian shelf (UiT The Arctic University of Norway, 2020).

    Google Scholar 

  • Williams, R. et al. Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean Coast. Manag. 115, 17–24 (2015).

    Article 

    Google Scholar 

  • Garibbo, S. et al. Low-frequency ocean acoustics: Measurements from the Lofoten-Vesterålen Ocean Observatory, Norway. (2020). https://doi.org/10.1121/2.0001324.

  • Dekeling, R. P. A. et al. Monitoring Guidance for Underwater Noise in European Seas, Part I: Executive Summary (Springer, 2014).

    Google Scholar 

  • Erbe, C. International regulation of underwater noise. Acoust. Aust. 41, 1–10 (2013).

    Google Scholar 

  • Halliday, W. D., Insley, S. J., Hilliard, R. C., de Jong, T. & Pine, M. K. Potential impacts of shipping noise on marine mammals in the western Canadian Arctic. Mar. Pollut. Bull. 123, 73–82 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Halliday, W. D. et al. Underwater sound levels in the Canadian Arctic, 2014–2019. Mar. Pollut. Bull. 168, 112437 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ødegaard, L., Pedersen, G. & Johnsen, E. Underwater Noise From Wind At the High North Love Ocean Observatory. UACE 2019 Conf. Proc. 359–366 (2019).

  • Zhang, G., Forland, T. N., Johnsen, E., Pedersen, G. & Dong, H. Measurements of underwater noise radiated by commercial ships at a cabled ocean observatory. Mar. Pollut. Bull. 153, 110948 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Maystrenko, Y. P., Olesen, O., Gernigon, L. & Gradmann, S. Deep structure of the Lofoten–Vesterålen segment of the Mid-Norwegian continental margin and adjacent areas derived from 3-D density modeling. J. Geophys. Res. Solid Earth 122, 1402–1433 (2017).

    ADS 
    Article 

    Google Scholar 

  • Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localization of cetaceans. J. Acoust. Soc. Am. 125, 2547–2547 (2009).

    ADS 
    Article 

    Google Scholar 

  • Hollander, M. & Wolfe, D. A. Nonparametric Statistical Methods (Wiley, 1973).

    MATH 

    Google Scholar 

  • Vogel, E. F. et al. Killer whale movements on the Norwegian shelf are associated with herring density. Mar. Ecol. Prog. Ser. 665, 217–231 (2021).

    ADS 
    Article 

    Google Scholar 

  • Garcia, H. A. et al. Temporal-spatial, spectral, and source level distributions of fin whale vocalizations in the Norwegian Sea observed with a coherent hydrophone array. ICES J. Mar. Sci. 76, 268–283 (2019).

    Article 

    Google Scholar 

  • Davis, G. E. et al. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Glob. Chang. Biol. 26, 4812–4840 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Risch, D. et al. Minke whale acoustic behavior and multi-year seasonal and diel vocalization patterns in Massachusetts Bay, USA. Mar. Ecol. Prog. Ser. 489, 279–295 (2013).

    ADS 
    Article 

    Google Scholar 

  • Le Tixerant, M., Le Guyader, D., Gourmelon, F. & Queffelec, B. How can Automatic Identification System (AIS) data be used for maritime spatial planning?. Ocean Coast. Manag. 166, 18–30 (2018).

    Article 

    Google Scholar 

  • Team, R. C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • Sumner, M. D. The Tag Location Problem. 133 (2011).

  • Sumner, M. D., Wotherspoon, S. J. & Hindell, M. A. Bayesian estimation of animal movement from archival and satellite tags. PLoS ONE 4, e7324 (2009).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Halliday, W. D. et al. The coastal Arctic marine soundscape near Ulukhaktok, Northwest Territories, Canada. Polar Biol. 43, 623–636 (2020).

    Article 

    Google Scholar 

  • Ezzet, F. & Pinheiro, J. Linear, generalized linear, and nonlinear mixed effects models. Pharm. Sci. Quant. Pharmacol. 1, 103–135. https://doi.org/10.1002/9780470087978.ch4 (2006).

    Article 

    Google Scholar 

  • Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). (2020).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 
    Book 

    Google Scholar 

  • Pante, E. & Simon-Bouhet, B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wessel, P. & Walter, H. F. S. A global self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741–8743 (1996).

    ADS 
    Article 

    Google Scholar 

  • Sueur, J., Aubin, T. & Simonis, C. Equipment review: Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics 18, 213–226 (2008).

    Article 

    Google Scholar 

  • The Mathworks Inc. MATLAB (R2019a). (MathWorks Inc., 2019).

  • Merchant, N. D. et al. Measuring acoustic habitats. Methods Ecol. Evol. 6, 257–265 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Team creates map for production of eco-friendly metals

    MIT expands research collaboration with Commonwealth Fusion Systems to build net energy fusion machine, SPARC