in

Honey bee symbiont buffers larvae against nutritional stress and supplements lysine

  • Dolezal AG, Toth AL. Feedbacks between nutrition and disease in honey bee health. Curr Opin Insect Sci. 2018;26:114–9.

    PubMed 
    Article 

    Google Scholar 

  • Scofield HN, Mattila HR. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults. PLoS ONE. 2015;10:e0121731.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Akman Gündüz E, Douglas AE. Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc R Soc B Biol Sci. 2009;276:987–91.

    Article 
    CAS 

    Google Scholar 

  • Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, et al. Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters. PLoS Biol 2006;4:e188.

  • Bing X, Attardo GM, Vigneron A, Aksoy E, Scolari F, Malacrida A, et al. Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proc R Soc B Biol Sci. 2017; 284:20170360.

  • Itoh H, Jang S, Takeshita K, Ohbayashi T, Ohnishi N, Meng X-Y, et al. Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc Natl Acad Sci USA. 2019;116:22673–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, et al. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun. 2018;9:2478.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kaltenpoth M, Göttler W, Herzner G, Strohm E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol. 2005;15:475–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oliver KM, Degnan PH, Hunter MS, Moran NA. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 2009;325:992–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011;334:670–4.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Boulétreau M. Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA. 2001;98:6247–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ. Microbial factor-mediated development in a host-bacterial mutualism. Science 2004;306:1186–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chun CK, Troll JV, Koroleva I, Brown B, Manzella L, Snir E, et al. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc Natl Acad Sci USA. 2008;105:11323–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 2014;343:529–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X. Molecular basis of symbiosis between Rhizobium and legumes. Nature 1997;387:394–401.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Médigue C, Masson-Boivin C, Gilbert LB, Cruveiller S, Gris C, Batut J, et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol. 2010;8:e1000280.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Brucker RM, Bordenstein SR. Speciation by symbiosis. Trends Ecol Evol. 2012;27:443–51.

    PubMed 
    Article 

    Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol. 2005;71:8802–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee FJ, Miller KI, McKinlay JB, Newton ILG. Differential carbohydrate utilization and organic acid production by honey bee symbionts. FEMS Microbiol Ecol. 2018;94:fiy113.

    CAS 
    Article 

    Google Scholar 

  • Lee FJ, Rusch DB, Stewart FJ, Mattila HR, Newton ILG. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ Microbiol. 2015;17:796–815.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zheng H, Nishida A, Kwong WK, Koch H, Engel P, Steele MI, et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio 2016;7:e01326–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kešnerová L, Mars RAT, Ellegaard KM, Troilo M, Sauer U, Engel P. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 2017;15:e2003467.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Gallai N, Salles JM, Settele J, Vaissière BE. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ. 2009;68:810–21.

    Article 

    Google Scholar 

  • Brodschneider R, Gray A, Adjlane N, Ballis A, Brusbardis V, Charrière JD, et al. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J Apic Res. 2018;57:452–7.

    Article 

    Google Scholar 

  • Kulhanek K, Steinhauer N, Rennich K, Caron DM, Sagili RR, Pettis JS, et al. A national survey of managed honey bee 2015-6 annual colony losses in the USA. J Apic Res. 2017;56:328–40.

    Article 

    Google Scholar 

  • Goulson D, Nicholls E, Botías C, Rotheray EL. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015;347:1255957.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Dolezal AG, Carrillo-Tripp J, Judd TM, Allen Miller W, Bonning BC, Toth AL. Interacting stressors matter: Diet quality and virus infection in honeybee health. R Soc Open Sci. 2019;6:81803.

    Article 
    CAS 

    Google Scholar 

  • St Clair AL, Zhang G, Dolezal AG, O’Neal ME, Toth AL, et al. Diversified farming in a monoculture landscape: effects on honey bee health and wild bee communities. Environ Entomol. 2020;49:753–64.

    Article 

    Google Scholar 

  • Naug D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol Conserv. 2009;142:2369–72.

    Article 

    Google Scholar 

  • Taha EKA, Al-Kahtani S, Taha R. Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi J Biol Sci. 2019;26:232–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • de Groot AP. Amino acid requirements for growth of the honeybee (Apis mellifica L.). Experientia 1952;8:192–4.

    Article 

    Google Scholar 

  • Brodschneider R, Crailsheim K. Nutrition and health in honey bees. Apidologie 2010;41:278–94.

    Article 

    Google Scholar 

  • Keller I, Fluri P, Imdorf A. Pollen nutrition and colony development in honey bees – Part II. Bee World. 2005;86:27–34.

    Article 

    Google Scholar 

  • Huang Z. Pollen nutrition affects honey bee stress resistance. Terr Arthropod Rev. 2012;5:175–89.

    Article 

    Google Scholar 

  • van Dooremalen C, Stam E, Gerritsen L, Cornelissen B, van der Steen J, van Langevelde F, et al. Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees. J Insect Physiol. 2013;59:487–93.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Feldhaar H, Straka J, Krischke M, Berthold K, Stoll S, Mueller MJ, et al. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol. 2007;5:48.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Sannino DR, Dobson AJ, Edwards K, Angert ER, Buchon N. The Drosophila melanogaster gut microbiota provisions thiamine to its host. MBio 2018;9:e00155–18.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hammer TJ, Moran NA. Links between metamorphosis and symbiosis in holometabolous insects. Philos Trans R Soc B Biol Sci. 2019;374:20190068.

    CAS 
    Article 

    Google Scholar 

  • Kowallik V, Mikheyev AS. Honey bee larval and adult microbime life stages are effectively decoupled with vertical transmisson overcoming early life perturbations. mBio 2021;12:e02966–21.

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 2011;14:403–14.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wright GA, Nicolson SW, Shafir S. Nutritional physiology and ecology of honey bees. Annu Rev Entomol. 2017;63:327–44.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Tarpy DR, Mattila HR, Newton ILG. Development of the honey bee gut microbiome throughout the queen-rearing process. Appl Environ Microbiol. 2015;81:3182–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Corby-Harris V, Snyder LA, Schwan MR, Maes P, McFrederick QS, Anderson KE. Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Appl Environ Microbiol. 2014;80:7460–72.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Vojvodic S, Rehan SM, Anderson KE. Microbial gut diversity of Africanized and European honey bee larval instars. PLoS ONE. 2013;8:72106.

    Article 
    CAS 

    Google Scholar 

  • Kwong WK, Medina LA, Koch H, Sing KW, Soh EJY, Ascher JS, et al. Dynamic microbiome evolution in social bees. Sci Adv. 2017;3:e1600513.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cohen O, Ashkenazy H, Belinky F, Huchon D, Pupko T. GLOOME: Gain loss mapping engine. Bioinformatics 2010;26:2914–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Price MN, Deutschbauer AM, Arkin AP. GapMind: Automated annotation of amino acid biosynthesis. mSystems 2020;5:e00291–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schmehl DR, Tomé HVV, Mortensen AN, Martins GF, Ellis JD. Protocol for the in vitro rearing of honey bee (Apis mellifera L.) workers. J Apic Res. 2016;55:113–29.

    Article 

    Google Scholar 

  • Li H, Tennessen JM. Preparation of Drosophila larval samples for gas chromatography-mass spectrometry (GC-MS)-based metabolomics. J Vis Exp. 2018;136:e57847.

    Google Scholar 

  • Rortais A, Arnold G, Halm MP, Touffet-Briens F. Modes of honeybees exposure to systemic insecticides: Estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 2005;36:71–83.

    CAS 
    Article 

    Google Scholar 

  • Buttstedt A, Mureşan CI, Lilie H, Hause G, Ihling CH, Schulze SH, et al. How honeybees defy gravity with royal jelly to raise queens. Curr Biol. 2018;28:1095–1100.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fratini F, Cilia G, Mancini S, Felicioli A. Royal jelly: An ancient remedy with remarkable antibacterial properties. Microbiol Res. 2016;192:130–41.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fontana R, Mendes MA, De Souza BM, Konno K, César LMM, Malaspina O, et al. Jelleines: A family of antimicrobial peptides from the royal jelly of honeybees (Apis mellifera). Peptides 2004;25:919–28.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rokop ZP, Horton MA, Newton ILG. Interactions between cooccurring lactic acid bacteria in honey bee hives. Appl Environ Microbiol. 2015;81:7261–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Crailsheim K, Brodschneider R, Aupinel P, Behrens D, Genersch E, Vollmann J, et al. Standard methods for artificial rearing of Apis mellifera larvae. J Apic Res. 2013;52:1–16.

    Article 

    Google Scholar 

  • Smith EA, Newton ILG. Genomic signatures of honey bee association in an acetic acid symbiont. Genome Biol Evol. 2020;12:1882–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kaftanoglu O, Linksvayer TA, Page RE. Rearing honey bees, Apis mellifera, in vitro 1: Effects of sugar concentrations on survival and development. J Insect Sci. 2011;11:96.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aupinel P, Fortini D, Dufour H, Tasei J-N, Michaud B, Odoux J-F, et al. Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae. Bull Insectol. 2005;58:107–11.

    Google Scholar 

  • Hansen AK, Moran NA. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc Natl Acad Sci USA. 2011;108:2849–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McCutcheon JP, McDonald BR, Moran NA. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA. 2009;106:15394–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. Aps Nat. 2000;407:81–86.

    CAS 

    Google Scholar 

  • Gil R, Silva FJ, Zientz E, Delmotte F, González-Candelas F, Latorre A, et al. The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes. Proc Natl Acad Sci USA. 2003;100:9388–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2012;10:13–26.

    CAS 
    Article 

    Google Scholar 

  • Wernegreen JJ, Lazarus AB, Degnan PH. Small genome of Candidatus Blochmannia, the bacterial endosymbiont of Camponotus, implies irreversible specialization to an intracellular lifestyle. Microbiology 2002;148:2551–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA. 2007;104:19392–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bennett GM, Mccutcheon JP, Macdonald BR, Romanovicz D, Moran NA. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis. mBio 2014;5:e01697–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 2013;153:1567.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bao XY, Yan JY, Yao YL, Wang Y, Bin, Visendi P, Seal S, et al. Lysine provisioning by horizontally acquired genes promotes mutual dependence between whitefly and two intracellular symbionts. PLOS Pathog. 2021;17:e1010120.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cotte JF, Casabianca H, Giroud B, Albert M, Lheritier J, Grenier-Loustalot MF. Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity. Anal Bioanal Chem. 2004;378:1342–50.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Baker HG. Non-sugar chemical constituents of nectar. Apidologie 1977;8:349–56.

    Article 

    Google Scholar 

  • Nyholm SV, McFall-Ngai MJ. The winnowing: Establishing the squid – Vibrios symbiosis. Nat Rev Microbiol. 2004;2:632–42.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73:4308–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Itoh H, Jang S, Takeshita K, Ohbayashi T, Ohnishi N, Meng XY, et al. Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc Natl Acad Sci USA. 2019;116:22673–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oono R, Anderson CG, Denison RF. Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates. Proc R Soc B Biol Sci. 2011;278:2698–703.

    Article 

    Google Scholar 

  • Brown BP, Wernegreen JJ. Genomic erosion and extensive horizontal gene transfer in gut-associated Acetobacteraceae. BMC Genom. 2019;20:1–15.

    CAS 
    Article 

    Google Scholar 

  • Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet. 2004;20:44–50.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meijuan X, Rao Z, Yang J, Dou W, Xu Z. The effect of a LYSE exporter overexpression on L-arginine production in Corynebacterium crenatum. Curr Microbiol. 2013;67:271–8.

    Article 
    CAS 

    Google Scholar 

  • Indurthi SM, Chou H-T, Lu C-D. Molecular characterization of lysR-lysXE, gcdR-gcdHG and amaR-amaAB operons for lysine export and catabolism: a comprehensive lysine catabolic network in Pseudomonas aeruginosa PAO1. Microbiology 2016;162:876–88.

    CAS 
    Article 

    Google Scholar 

  • Pathania A, Sardesai AA. Distinct paths for basic amino acid export in Escherichia coli: YbjE (LysO) mediates export of L-lysine. J Bacteriol. 2015;197:2036–47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Miller DL, Smith EA, Newton ILG. A bacterial symbiont protects honey bees from fungal disease. mBio 2021;12:e00503–21.

    CAS 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Combining host and vector data informs emergence and potential impact of an Usutu virus outbreak in UK wild birds

    Presenting the Compendium Isotoporum Medii Aevi, a Multi-Isotope Database for Medieval Europe