in

A nitrite-oxidising bacterium constitutively consumes atmospheric hydrogen

  • Daims H, Lücker S, Wagner M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 2016;24:699–712.

    CAS 
    Article 

    Google Scholar 

  • Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol. 1995;164:16–23.

    CAS 
    Article 

    Google Scholar 

  • Koch H, Galushko A, Albertsen M, Schintlmeister A, Gruber-Dorninger C, Lücker S, et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science. 2014;345:1052–4.

    CAS 
    Article 

    Google Scholar 

  • Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA. 2015;112:11371–6.

    CAS 
    Article 

    Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete nitrification by Nitrospira bacteria. Nature. 2015;528:504–9.

    CAS 
    Article 

    Google Scholar 

  • van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B, et al. Complete nitrification by a single microorganism. Nature. 2015;528:555–9.

    Article 

    Google Scholar 

  • Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA. 2010;107:13479–84.

    Article 

    Google Scholar 

  • Mundinger AB, Lawson CE, Jetten MSM, Koch H, Lücker S. Cultivation and transcriptional analysis of a canonical Nitrospira under stable growth conditions. Front Microbiol. 2019;10:1325.

  • Morita RY. Is H2 the universal energy source for long-term survival? Micro Ecol. 1999;38:307–20.

    CAS 
    Article 

    Google Scholar 

  • Bay SK, Dong X, Bradley JA, Leung PM, Grinter R, Jirapanjawat T, et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat Microbiol. 2021;6:246–56.

    CAS 
    Article 

    Google Scholar 

  • Constant P, Poissant L, Villemur R. Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. ISME J. 2008;2:1066–76.

    CAS 
    Article 

    Google Scholar 

  • Greening C, Carere CR, Rushton-Green R, Harold LK, Hards K, Taylor MC, et al. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc Natl Acad Sci USA. 2015;112:10497–502.

    CAS 
    Article 

    Google Scholar 

  • Islam ZF, Cordero PRF, Feng J, Chen Y-J, Bay SK, Jirapanjawat T, et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 2019;13:1801.

    CAS 
    Article 

    Google Scholar 

  • Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020;14:2649–58.

    CAS 
    Article 

    Google Scholar 

  • Schmitz RA, Pol A, Mohammadi SS, Hogendoorn C, van Gelder AH, Jetten MSM, et al. The thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV oxidizes subatmospheric H2 with a high-affinity, membrane-associated [NiFe] hydrogenase. ISME J. 2020;14:1223–32.

    CAS 
    Article 

    Google Scholar 

  • Ortiz M, Leung PM, Shelley G, Jirapanjawat T, Nauer PA, Van Goethem M, et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci. 2021;118:e2025322118.

    CAS 
    Article 

    Google Scholar 

  • Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci USA. 2014;111:4257–61.

    CAS 
    Article 

    Google Scholar 

  • Myers MR, King GMY. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66:5328–35.

    CAS 
    Article 

    Google Scholar 

  • Cordero PRF, Grinter R, Hards K, Cryle MJ, Warr CG, Cook GM, et al. Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. J Biol Chem. 2019;294:18980–91.

    CAS 
    Article 

    Google Scholar 

  • Sander R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys. 2015;15:4399–981.

    CAS 
    Article 

    Google Scholar 

  • Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.

    CAS 
    Article 

    Google Scholar 

  • Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.

    CAS 
    Article 

    Google Scholar 

  • Shah AD, Goode RJA, Huang C, Powell DR, Schittenhelm RB. LFQ-Analyst: an easy-to-use interactive web platform to analyze and visualize label-free proteomics data preprocessed with MaxQuant. J Proteome Res. 2020;19:204–11.

    CAS 
    Article 

    Google Scholar 

  • Nowka B, Daims H, Spieck E. Comparative oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as key factor for niche differentiation. Appl Environ Microbiol. 2014;81:745–53.

  • Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977;41:809.

    Article 

    Google Scholar 

  • Greening C, Villas-Bôas SG, Robson JR, Berney M, Cook GM. The growth and survival of Mycobacterium smegmatis is enhanced by co-metabolism of atmospheric H2. PLoS ONE. 2014;9:e103034.

    Article 

    Google Scholar 

  • Constant P, Chowdhury SP, Pratscher J, Conrad R. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ Microbiol. 2010;12:821–9.

    CAS 
    Article 

    Google Scholar 

  • Häring V, Conrad R. Demonstration of two different H2-oxidizing activities in soil using an H2 consumption and a tritium exchange assay. Biol Fertil Soils. 1994;17:125–8.

    Article 

    Google Scholar 

  • Yang Y, Daims H, Liu Y, Herbold CW, Pjevac P, Lin J-G, et al. Activity and metabolic versatility of complete ammonia oxidizers in full-scale wastewater treatment systems. mBio. 2020;11:e03175–19.

  • Chadwick GL, Hemp J, Fischer WW, Orphan VJ. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. ISME J. 2018;12:2668–80.

    CAS 
    Article 

    Google Scholar 

  • Alberty RA. Standard apparent reduction potentials of biochemical half reactions and thermodynamic data on the species involved. Biophys Chem. 2004;111:115–22.

    CAS 
    Article 

    Google Scholar 

  • Burns LC, Stevens RJ, Smith RV, Cooper JE. The occurrence and possible sources of nitrite in a grazed, fertilized, grassland soil. Soil Biol Biochem. 1995;27:47–59.

    CAS 
    Article 

    Google Scholar 

  • Zhang M, Yuan D, Chen G, Li Q, Zhang Z, Liang Y. Simultaneous determination of nitrite and nitrate at nanomolar level in seawater using on-line solid phase extraction hyphenated with liquid waveguide capillary cell for spectrophotometric detection. Microchim Acta. 2009;165:427–35.

    CAS 
    Article 

    Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer K-H, Wagner M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol. 2001;67:5273–84.

    CAS 
    Article 

    Google Scholar 

  • Lebedeva EV, Alawi M, Maixner F, Jozsa P-G, Daims H, Spieck E. Physiological and phylogenetic characterization of a novel lithoautotrophic nitrite-oxidizing bacterium, ‘Candidatus Nitrospira bockiana’. Int J Syst Evol Microbiol. 2008;58:242–50.

    CAS 
    Article 

    Google Scholar 

  • Lebedeva EV, Off S, Zumbrägel S, Kruse M, Shagzhina A, Lücker S, et al. Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. FEMS Microbiol Ecol. 2011;75:195–204.

    CAS 
    Article 

    Google Scholar 

  • Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U. Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol. 1986;144:1–7.

    Article 

    Google Scholar 

  • Maixner F, Noguera DR, Anneser B, Stoecker K, Wegl G, Wagner M, et al. Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environ Microbiol. 2006;8:1487–95.

    CAS 
    Article 

    Google Scholar 

  • Sorokin DY, Lucker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WIC, et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 2012;6:2245–56.

    CAS 
    Article 

    Google Scholar 

  • Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.

    CAS 
    Article 

    Google Scholar 

  • Daebeler A, Kitzinger K, Koch H, Herbold CW, Steinfeder M, Schwarz J, et al. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant. Nitrospira ISME J. 2020;14:2967–79.

    CAS 
    Article 

    Google Scholar 

  • Suarez C, Sedlacek CJ, Gustavsson DJI, Eiler A, Modin O, Hermansson M, et al. Disturbance-based management of ecosystem services and disservices in partial nitritation anammox biofilms. 2021. https://www.biorxiv.org/content/10.1101/2021.07.05.451122v1.


  • Source: Ecology - nature.com

    The network nature of language endangerment hotspots

    Tree-ring data set for dendroclimatic reconstructions and dendrochronological dating in European Russia