in

Towards 3D basic theories of plant forms

  • Cremers, G. Presence of 10 models of plant architecture in Euphorbes-Malgaches. Comptes Rendus Hebd. des. Seances de. L Academie des. Sci. Ser. D. 281, 1575–1578 (1975).

    Google Scholar 

  • Balduzzi, M. et al. Reshaping plant biology: qualitative and quantitative descriptors for plant morphology. Front. Plant Sci. 8, 117 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Albert, C. H. et al. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct. Ecol. 24, 1192–1201 (2010).

    Article 

    Google Scholar 

  • Farnsworth, K. D. & Niklas, K. J. Theories of optimization, form and function in branching architecture in plants. Funct. Ecol. 9, 355–363 (1995).

    Article 

    Google Scholar 

  • Enquist, B. J. et al. in Advances in Ecological Research (eds Pawar, S.et al.), 249–318 (Academic Press, 2015).

  • Niklas, K. J. & Spatz, H. C. Allometric theory and the mechanical stability of large trees: proof and conjecture. Am. J. Bot. 93, 824–828 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Price, C. A. et al. The metabolic theory of ecology: prospects and challenges for plant biology. N. Phytol. 188, 696–710 (2010).

    Article 

    Google Scholar 

  • Martone, P. T. et al. Mechanics without muscle: biomechanical inspiration from the plant world. Integr. Comp. Biol. 50, 888–907 (2010).

    PubMed 
    Article 

    Google Scholar 

  • West, G. B. & Brown, J. H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Enquist, B. J. Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22, 1045–1064 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Anfodillo, T. et al. An allometry-based approach for understanding forest structure, predicting tree-size distribution and assessing the degree of disturbance. Proc. R. Soc. Lond. B Biol. Sci. 280, 20122375 (2013).

    Google Scholar 

  • Duncanson, L. I., Dubayah, R. O. & Enquist, B. J. Assessing the general patterns of forest structure: quantifying tree and forest allometric scaling relationships in the United States. Glob. Ecol. Biogeogr. 24, 1465–1475 (2015).

    Article 

    Google Scholar 

  • West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Winter, C. L. & Tartakovsky, D. M. Theoretical foundation for conductivity scaling. Geophys. Res. Lett. 28, 4367–4369 (2001).

    Article 

    Google Scholar 

  • Reich, P. B. et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Choi, S. et al. Application of the metabolic scaling theory and water–energy balance equation to model large‐scale patterns of maximum forest canopy height. Glob. Ecol. Biogeogr. 25, 1428–1442 (2016).

    Article 

    Google Scholar 

  • Osler, G. H. R., West, P. W. & Downes, G. M. Effects of bending stress on taper and growth of stems of young Eucalyptus regnans trees. Trees 10, 239–246 (1996).

    Google Scholar 

  • Berthier, S. et al. Irregular heartwood formation in maritime pine (Pinus pinaster Ait): consequences for biomechanical and hydraulic tree functioning. Ann. Bot. 87, 19–25 (2001).

    Article 

    Google Scholar 

  • Fournier, M. et al. Integrative biomechanics for tree ecology: beyond wood density and strength. J. Exp. Bot. 64, 4793–4815 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sone, K., Noguchi, K. & Terashima, I. Dependency of branch diameter growth in young Acer trees on light availability and shoot elongation. Tree Physiol. 25, 39–48 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Anten, N. P. & Schieving, F. The role of wood mass density and mechanical constraints in the economy of tree architecture. Am. Nat. 175, 250–260 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Jelonek, T. et al. The biomechanical formation of trees (Prace Naukowe, Doniesienia, Komunikaty, 2019).

  • Muller‐Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).

    PubMed 
    Article 

    Google Scholar 

  • McMahon, T. A. & Kronauer, R. E. Tree structures: deducing the principle of mechanical design. J. Theor. Biol. 59, 443–466 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alméras, T. & Fournier, M. Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. J. Theor. Biol. 256, 370–381 (2009).

    PubMed 
    Article 

    Google Scholar 

  • West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mäkelä, A. & Valentine, H. T. Crown ratio influences allometric scaling in trees. Ecol 87, 2967–2972 (2006).

    Article 

    Google Scholar 

  • Duursma, R. A. et al. Self‐shading affects allometric scaling in trees. Funct. Ecol. 24, 723–730 (2010).

    Article 

    Google Scholar 

  • Pretzsch, H. & Dieler, J. Evidence of variant intra-and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169, 637–649 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lin, Y. et al. Plant interactions alter the predictions of metabolic scaling theory. PloS One 8, e57612 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cheng, D. et al. Scaling relationship between tree respiration rates and biomass. Biol. Lett. 6, 715–717 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ogawa, K. Scaling relations based on the geometric and metabolic theories in woody plant species: A review. Perspect. Plant Ecol. Evol. Syst. 40, 125480 (2019).

    Article 

    Google Scholar 

  • Risto, S. et al. Functional–structural plant models: a growing paradigm for plant studies. Ann. Bot. 114, 599–603 (2014).

    Article 

    Google Scholar 

  • Jackson, T. et al. Finite element analysis of trees in the wind based on terrestrial laser scanning data. Agric. Meteorol. 265, 137–144 (2019).

    Article 

    Google Scholar 

  • Disney, M. Terrestrial LiDAR: a three‐dimensional revolution in how we look at trees. N. Phytol. 222, 1736–1741 (2019).

    Article 

    Google Scholar 

  • Malhi, Y. et al. New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning. Interface Focus 8, 20170052 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bayer, D., Seifert, S. & Pretzsch, H. Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27, 1035–1047 (2013).

    Article 

    Google Scholar 

  • Lin, Y. & Herold, M. Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agric. Meteorol. 216, 105–114 (2016).

    Article 

    Google Scholar 

  • Tanago, J. G. et al. Estimation of above‐ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 9, 223–234 (2018).

    Article 

    Google Scholar 

  • Takoudjou, S. M. et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods Ecol. Evol. 9, 905–916 (2018).

    Article 

    Google Scholar 

  • Dassot, M., Fournier, M. & Deleuze, C. Assessing the scaling of the tree branch diameters frequency distribution with terrestrial laser scanning: methodological framework and issues. Ann. Sci. 76, 66 (2019).

    Article 

    Google Scholar 

  • Klockow, P. A. et al. Allometry and structural volume change of standing dead southern pine trees using non-destructive terrestrial LiDAR. Remote Sens. Environ. 241, 111729 (2020).

    Article 

    Google Scholar 

  • Stovall, A. E., Anderson-Teixeira, K. J. & Shugart, H. H. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Ecol. Manag. 427, 217–229 (2018).

    Article 

    Google Scholar 

  • Dai, J. et al. Drought-modulated allometric patterns of trees in semi-arid forests. Commun. Biol. 3, 1–8 (2020).

    Article 

    Google Scholar 

  • Ogawa, K., Hagihara, A. & Hozumi, K. Growth analysis of a seedling community of Chamaecyparis obtusa. VI. Estimation of individual gross primary production by the summation method. In Transactions of the 30th Meeting of Chubu Branch of Japanese Forestry Society, 179–181 (Honda Kiyoshi, 1985).

  • Yokota, T. & Hagihara, A. Dependence of the aboveground CO2 exchange rate on tree size in field-grown hinoki cypress (Chamaecyparis obtusa). J. Plant Res. 109, 177–184 (1996).

    Article 

    Google Scholar 

  • Enquist, B. J. et al. Biological scaling: does the exception prove the rule? Nature 445, E9–E10 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lau, A. et al. Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling. Ecol. Manag. 439, 132–145 (2019).

    Article 

    Google Scholar 

  • Li, Y. et al. Retrieval of tree branch architecture attributes from terrestrial laser scan data using a Laplacian algorithm. Agric. Meteorol. 284, 107874 (2020).

    Article 

    Google Scholar 

  • Noyer, E. et al. Biomechanical control of beech pole verticality (Fagus sylvatica) before and after thinning: theoretical modelling and ground‐truth data using terrestrial LiDAR. Am. J. Bot. 106, 187–198 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Jackson, T. et al. A new architectural perspective on wind damage in a natural forest. Front. Glob. Chang. 1, 13 (2019).

    Article 

    Google Scholar 

  • Jackson, T. Strain Measurements on 21 Trees in Wytham Woods, UK. NERC Environmental Information Data Centre. https://doi.org/10.5285/533d87d3-48c1-4c6e-9f2f-fda273ab45bc (2018).

  • Kozłowski, J. & Konarzewski, M. Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct. Ecol. 18, 283–289 (2004).

    Article 

    Google Scholar 

  • Kleiber, M. Body size and metabolic rate. Physiol. Rev. 27, 511–541 (1947).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hay, M. J. M. et al. Branching responses of a plagiotropic clonal herb to localised incidence of light simulating that reflected from vegetation. Oecologia 127, 185–190 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cordero, R. A., Fetcher, N. & Voltzow, J. Effects of wind on the allometry of two species of plants in an elfin cloud forest. Biotropica 39, 177–185 (2010).

    Article 

    Google Scholar 

  • Anfodillo, T. et al. Allometric trajectories and “stress”: a quantitative approach. Front. Plant Sci. 7, 1681 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Louarn, G. & Song, Y. Two decades of functional-structural plant modelling: now addressing fundamental questions in systems biology and predictive ecology. Ann. Bot. 126, 501–509 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Poorter, H. & Sack, L. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3, 259 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Thomas, S. C. Reproductive allometry in Malaysian rain forest trees: biomechanics versus optimal allocation. Evol. Ecol. 10, 517–530 (1996).

    Article 

    Google Scholar 

  • Kempes, C. P. et al. Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PLoS One 6, e20551 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blanchard, E. et al. Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas. Trees 30, 1953–1968 (2016).

    Article 

    Google Scholar 

  • Swetnam, T. L., O’Connor, C. D. & Lynch, A. M. Tree morphologic plasticity explains deviation from metabolic scaling theory in semi-arid conifer forests, southwestern USA. PLoS One 11, e0157582 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Loehle, C. Biomechanical constraints on tree architecture. Trees 30, 2061–2070 (2016).

    Article 

    Google Scholar 

  • Guillon, T., Dumont, Y. & Fourcaud, T. Numerical methods for the biomechanics of growing trees. Comput. Math. Appl. 64, 289–309 (2012).

    Article 

    Google Scholar 

  • Olson, M. E., Rosell, J. A., Muñoz, S. Z. & Castorena, M. Carbon limitation, stem growth rate and the biomechanical cause of Corner’s rules. Ann. Bot. 122, 583–592 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • West, G. B., Enquist, B. J. & Brown, J. H. A general quantitative theory of forest structure and dynamics. Proc. Natl Acad. Sci. USA 106, 7040–7045 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The influence and acting pattern of China's national carbon emission trading scheme on regional ecologicalization efficiency of industry

    Free hand hitting of stone-like objects in wild gorillas