in

No evidence for long-range male sex pheromones in two malaria mosquitoes

  • Alexander, R. D., Marshall, D. C. & Cooley, J. R. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. C. & Crespi, B. J.) 4–31 (Cambridge Univ. Press, 1997).

  • Clements, A. N. The Biology of Mosquitoes. Volume 2: Sensory, Reception and Behaviour (CABI Publishing, 1999).

  • Downes, J. A. The swarming and mating flight of Diptera. Annu. Rev. Entomol. 14, 271–298 (1969).

    Article 

    Google Scholar 

  • Gibson, N. H. E. On the mating swarms of certain Chironomidae (Diptera). Trans. R. Entomol. Soc. Lond. 95, 263–294 (1945).

    Article 

    Google Scholar 

  • Sivinski, J. M. & Petersson, E. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. A. & Crespi, J. B.) 294–309 (Cambridge Univ. Press, 1997).

  • Shelly, T. E. & Whittier, T. S. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. A. & Crespi, J. B.) 273–293 (Cambridge Univ. Press, 1997).

  • Savolainen, E. Swarming in Ephemeroptera: the mechanism of swarming and the effects of illumination and weather. Ann. Zool. Fennici 15, 17–52 (1978).

    Google Scholar 

  • Howell, P. I. & Knols, B. G. J. J. Male mating biology. Malar. J. 8, S8 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charlwood, J. D. & Jones, M. D. R. Mating in the mosquito, Anopheles gambiae s.l. II. Swarming behaviour. Physiol. Entomol. 5, 315–320 (1980).

    Article 

    Google Scholar 

  • Marchand, R. P. Field observations on swarming and mating in Anopheles gambiae mosquitoes in Tanzania. Neth. J. Zool. 34, 367–387 (1984).

    Article 

    Google Scholar 

  • Charlwood, J. D. et al. The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from São Tomé Island. J. Vector Ecol. 27, 178–183 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Diabaté, A. et al. Natural swarming behaviour of the molecular M form of Anopheles gambiae. Trans. R. Soc. Trop. Med. Hyg. 97, 713–716 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Diabaté, A. et al. Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae. Proc. R. Soc. B Biol. Sci. 276, 4215–4222 (2009).

    Article 

    Google Scholar 

  • Sawadogo, P. S. et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Trop. 130, 24–34 (2014).

    Article 

    Google Scholar 

  • della Torre, A. et al. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol. Biol. 10, 9–18 (2001).

    Article 
    PubMed 

    Google Scholar 

  • della Torre, A., Tu, Z. & Petrarca, V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem. Mol. Biol. 35, 755–769 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tripet, F. et al. DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae. Mol. Ecol. 10, 1725–1732 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Diabaté, A. et al. Mixed swarms of the molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in sympatric area from Burkina Faso. J. Med. Entomol. 43, 480–483 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Costantini, C. et al. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 9, 16 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sawadogo, P. S. et al. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit. Vectors 6, 275 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Persiani, A., Dideco, M. A. & Petrangeli, G. Osservzioni di laboratorio su polimorfismi da inversione originati da incroci tra popolazioni diverse di Anopheles gambiae s.s. Ann. Dell’Istituto Super. Di Sanita 22, 221–224 (1986).

    CAS 

    Google Scholar 

  • Diabaté, A. et al. Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment. J. Med. Entomol. 42, 548–553 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Diabaté, A., Dabiré, K. R., Millogo, N. & Lehmann, T. Evaluating the effect of postmating isolation between molecular forms of Anopheles gambiae (Diptera: Culicidae). J. Med. Entomol. 44, 60–64 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Hahn, M. W., White, B. J., Muir, C. D. & Besansky, N. J. No evidence for biased co-transmission of speciation Islands in Anopheles gambiae. Philos. Trans. R. Soc. B Biol. Sci. 367, 374–384 (2012).

    Article 

    Google Scholar 

  • Pombi, M. et al. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol. Appl. 00, 1–19 (2017).

    Google Scholar 

  • Lehmann, T. & Diabaté, A. The molecular forms of Anopheles gambiae: a phenotypic perspective. Infect. Genet. Evol. 8, 737–746 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clements, A. N. The Biology of Mosquitoes: Development, Nutrition and Reproduction (Chapman & Hall, 1992).

  • Gibson, G., Warren, B. & Russell, I. J. Humming in tune: sex and species recognition by mosquitoes on the wing. J. Assoc. Res. Otolaryngol. 11, 527–540 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. ‘Singing on the wing’ as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Feugère, L., Gibson, G., Manoukis, N. C. & Roux, O. Mosquito sound communication: are male swarms loud enough to attract females? J. R. Soc. Interface 18, 20210121 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poda, S. B. et al. Sex aggregation and species segregation cues in swarming mosquitoes: role of ground visual markers. Parasit. Vectors 12, 589 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411–415 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Dao, A. et al. Assessment of alternative mating strategies in Anopheles gambiae: does mating occur indoors? J. Med. Entomol. 45, 643–652 (2008).

    PubMed 

    Google Scholar 

  • Gomulski, L. Aspects of Mosquito Mating Behaviour. PhD thesis, Univ. London (1988).

  • Kelly, D. W. & Dye, C. Pheromones, kairomones and the aggregation dynamics of the sandfly Lutzomyia longipalpis. Anim. Behav. 53, 721–731 (1997).

    Article 

    Google Scholar 

  • Bray, D. P., Alves, G. B., Dorval, M. E., Brazil, R. P. & Hamilton, J. G. C. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis to experimental chicken sheds treated with insecticide. Parasit. Vectors 3, 16 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diabaté, A. et al. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol. Biol. 11, 184 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levi-Zada, A. et al. Diel periodicity of pheromone release by females of Planococcus citri and Planococcus ficus and the temporal flight activity of their conspecific males. Naturwissenschaften 101, 671–678 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bjostad, L. B., Gaston, L. K. & Shorey, H. H. Temporal pattern of sex pheromone release by female Trichoplusia ni. J. Insect Physiol. 26, 493–498 (1980).

    Article 

    Google Scholar 

  • Merlin, C. et al. An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth Spodoptera littoralis. J. Biol. Rhythms 22, 502–514 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rund, S. S. C. et al. Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci. Rep. 3, 2494 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robledo, N. & Arzuffi, R. Influence of host fruit and conspecifics on the release of the sex pheromone by Toxotrypana curvicauda males (Diptera: Tephritidae). Environ. Entomol. 41, 387–391 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Andersson, J. et al. Male sex pheromone release and female mate choice in a butterfly. J. Exp. Biol. 210, 964–970 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mozūraitis, R. et al. Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nat. Ecol. Evol. 4, 1395–1401 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Poda, S. B. et al. No evidence for long-range male sex pheromones in two malaria mosquitoes. Preprint at bioRxiv https://doi.org/10.1101/2020.07.05.187542 (2021).

  • Verhulst, N. O. et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PLoS ONE 5, e15829 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pandey, S. K. & Kim, K. Human body-odor components and their determination. Trends Anal. Chem. 30, 784–796 (2011).

    CAS 
    Article 

    Google Scholar 

  • Dormont, L., Bessiere, J. M., McKey, D. & Cohuet, A. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human-pathogen-vector interactions. J. Exp. Biol. 216, 2783–2788 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Dormont, L., Bessière, J. M. & Cohuet, A. Human skin volatiles: a review. J. Chem. Ecol. 39, 569–578 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tchouassi, D. P. et al. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for rift valley fever virus. PLoS Negl. Trop. Dis. 7, e2007 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McBride, C. S. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poli, D. et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. J. Chromatogr. B. 878, 2643–2651 (2010).

    CAS 
    Article 

    Google Scholar 

  • Filipiak, W. et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J. Breath. Res. 8, 027111 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Calenic, B. & Amann, A. Detection of volatile malodorous compounds in breath: current analytical techniques and implications in human disease. Bioanalysis 6, 357–376 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cainap, C., Pop, L. A., Balacescu, O. & Cainap, S. S. Early diagnosis and screening in lung cancer. Am. J. Cancer Res. 10, 1993–2009 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dekel, A., Yakir, E. & Bohbot, J. D. The sulcatone receptor of the strict nectar-feeding mosquito Toxorhynchites amboinensis. Insect Biochem. Mol. Biol. 111, 103174 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Nyasembe, V. O. et al. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS Negl. Trop. Dis. 9, e89818 (2014).

    Google Scholar 

  • Wondwosen, B. et al. Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malar. J. 17, 90 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wondwosen, B. et al. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Sci. Rep. 6, 37930 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suh, E., Choe, D., Saveer, A. M. & Zwiebel, L. J. Suboptimal larval habitats modulate oviposition of the malaria vector mosquito Anopheles coluzzii. PLoS ONE 11, e0149800 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kostiainen, R. Volatile organic compounds in the indoor air of normal and sick houses. Atmos. Environ. 29, 693–702 (1995).

    CAS 
    Article 

    Google Scholar 

  • Kruza, M., Lewis, A. C., Morrison, C. G. & Carslaw, N. Impact of surface ozone interactions on indoor air chemistry: a modeling study. Indoor Air 27, 1001–1011 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tripet, F., Dolo, G., Traoré, S. & Lanzaro, G. C. The ‘wingbeat hypothesis’ of reproductive isolation between members of the Anopheles gambiae complex (Diptera: Culicidae) does not fly. J. Med. Entomol. 41, 375–384 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Facchinelli, L. et al. Stimulating Anopheles gambiae swarms in the laboratory: application for behavioural and fitness studies. Malar. J. 14, 271 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niang, A. et al. Semi-field and indoor setups to study malaria mosquito swarming behavior. Parasit. Vectors 12, 446 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibson, G. Swarming behaviour of the mosquito Culex pipiens quinquefasciatus: a quantitative analysis. Physiol. Entomol. 10, 283–296 (1985).

    Article 

    Google Scholar 

  • Bimbilé Somda, N. S. et al. Ecology of reproduction of Anopheles arabiensis in an urban area of Bobo-Dioulasso, Burkina Faso (West Africa): monthly swarming and mating frequency and their relation to environmental factors. PLoS ONE 13, e0205966 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maïga, H., Dabiré, R. K., Lehmann, T., Tripet, F. & Diabaté, A. Variation in energy reserves and role of body size in the mating system of Anopheles gambiae. J. Vector Ecol. 37, 289–297 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Maïga, H. et al. Role of nutritional reserves and body size in Anopheles gambiae males mating success. Acta Trop. 132S, S102–S107 (2014).

    Article 

    Google Scholar 

  • Schiestl, F. P. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13, 643–656 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Goodrich, K. R., Zjhra, M. L., Ley, C. A. & Raguso, R. A. When flowers smell fermented: the chemistry and ontogeny of yeasty floral scent in Pawpaw (Asimina triloba: Annonaceae). Int. J. Plant Sci. 167, 33–46 (2006).

    CAS 
    Article 

    Google Scholar 

  • Iatrou, K. & Biessmann, H. Sex-biased expression of odorant receptors in antennae and palps of the African malaria vector Anopheles gambiae. Insect Biochem. Mol. Biol. 38, 268–274 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pitts, R. J., Rinker, D. C., Jones, P. L., Rokas, A. & Zwiebel, L. J. Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics 12, 271 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, T. et al. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr. Biol. 17, 1533–1544 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guidobaldi, F., May-Concha, I. J. & Guerenstein, P. G. Morphology and physiology of the olfactory system of blood-feeding insects. J. Physiol. Paris 108, 96–111 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mosqueira, B. et al. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso. Acta Trop. 148, 162–169 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Poda, S. B. et al. Targeted application of an organophosphate-based paint applied on windows and doors against Anopheles coluzzii resistant to pyrethroids under real life conditions in Vallée du Kou, Burkina Faso (West Africa). Malar. J. 17, 136 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diabaté, A. et al. The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena. Trop. Med. Int. Heal. 9, 1267–1273 (2004).

    Article 

    Google Scholar 

  • Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lefèvre, T. et al. Evolutionary lability of odour-mediated host preference by the malaria vector Anopheles gambiae. Trop. Med. Int. Heal. 14, 228–236 (2009).

    Article 

    Google Scholar 

  • Lefèvre, T. et al. Beer consumption increases human attractiveness to malaria mosquitoes. PLoS ONE 5, e9546 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vantaux, A. et al. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation. Front. Ecol. Evol. 3, 86 (2015).

    Article 

    Google Scholar 

  • Nguyen, P. L. et al. No evidence for manipulation of Anopheles gambiae, An. coluzzii and An. arabiensis host preference by Plasmodium falciparum. Sci. Rep. 7, 9415 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tienpont, B., David, F., Bicchi, C. & Sandra, P. High capacity headspace sorptive extraction. J. Microcolumn Sep. 12, 577–584 (2000).

    CAS 
    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1520-667X(2000)12:113.0.CO;2-Q” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1520-667X%282000%2912%3A11%3C577%3A%3AAID-MCS30%3E3.0.CO%3B2-Q” aria-label=”Article reference 84″>Article 

    Google Scholar 

  • Bicchi, C., Cordero, C., Iori, C., Rubiolo, P. & Sandra, P. Headspace Sorptive Extraction (HSSE) in the headspace analysis of aromatic and medicinal plants. J. High. Resolut. Chromatogr. 23, 539–546 (2000).

    CAS 
    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1521-4168(20000901)23:93.0.CO;2-3″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F1521-4168%2820000901%2923%3A9%3C539%3A%3AAID-JHRC539%3E3.0.CO%3B2-3″ aria-label=”Article reference 85″>Article 

    Google Scholar 

  • Souto-Vilarós, D. et al. Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig-wasp mutualism. J. Ecol. 106, 2256–2273 (2018).

    Article 

    Google Scholar 

  • Zellner, Bd’Acampora et al. Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr. J. 23, 297–314 (2008).

    Article 
    CAS 

    Google Scholar 

  • Charpentier, M. J. E., Barthes, N., Proffit, M., Bessière, J. M. & Grison, C. Critical thinking in the chemical ecology of mammalian communication: roadmap for future studies. Funct. Ecol. 26, 769–774 (2012).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A lasting — and valuable — legacy

    Cracking the carbon removal challenge