in

Recovery and genome reconstruction of novel magnetotactic Elusimicrobiota from bog soil

  • Steen AD, Carini ACP, Lloyd KG, Thrash JC, Deangelis KM, Fierer N. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 2019;13:3126–30.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lloyd KG, Steen AD, Ladau J, Yin J. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems. 2018;3:e00055–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcy Y, Ouverney C, Bik EM, Lo T, Ivanova N, Garcia H, et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA. 2007;104:11889–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pascoal F, Costa R, Magalhães C. The microbial rare biosphere: current concepts, methods and ecological principles. FEMS Microbiol Ecol. 2021;97:fiaa227.

    CAS 
    PubMed 

    Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gareev KG, Grouzdev DS, Kharitonskii PV, Kosterov A, Koziaeva VV, Sergienko ES, et al. Magnetotactic bacteria and magnetosomes: basic properties and applications. Magnetochemistry. 2021;7:86.

    CAS 

    Google Scholar 

  • Lefevre CT, Bazylinski DA. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev. 2013;77:497–526.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin W, Pan Y, Bazylinsky DA. Diversity and ecology of and biomineralization by magnetotactic bacteria. Environ Microbiol Rep. 2017;9:345–56.

    CAS 
    PubMed 

    Google Scholar 

  • Uebe R, Schüler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol. 2016;14:621–37.

    CAS 
    PubMed 

    Google Scholar 

  • Lefèvre CT, Frankel RB, Bazylinski DA. Magnetotaxis in prokaryotes. eLS. 2011. https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2F9780470015902.a0000397.pub2https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2F9780470015902.a0000397.pub2.

  • Goswami P, He K, Li J, Pan Y, Roberts AP, Lin W. Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications. npj Biofilms Microbiomes. 2022;8:43.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Flies CB, Jonkers HM, De Beer D, Bosselmann K, Böttcher ME, Schüler D. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol Ecol. 2005;52:185–95.

    CAS 
    PubMed 

    Google Scholar 

  • Wolfe RS, Thauer RK, Pfennig N. A’capillary racetrack’ method for isolation of magnetotactic bacteria. FEMS Microbiol Ecol. 1987;45:31–5.

    Google Scholar 

  • Jogler C, Lin W, Meyerdierks A, Kube M, Katzmann E, Flies C, et al. Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl Environ Microbiol. 2009;75:3972–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin W, Zhang W, Paterson GA, Zhu Q, Zhao X. Expanding magnetic organelle biogenesis in the domain Bacteria. Microbiome. 2020;8:152.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geissinger O, Herlemann DPR, Mo E, Maier UG, Brune A. The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the Termite Group 1 phylum. Appl Environ Microbiol. 2009;75:2831–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wakako I-O, Brune A. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae’. Mol Ecol. 2009;18:332–42.

    Google Scholar 

  • Zheng H, Dietrich C, Radek R, Brune A. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia) – an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ Ecol Stat. 2016;18:191–204.

    CAS 

    Google Scholar 

  • Méheust R, Castelle CJ, Carnevali PBM, Chen L, Amano Y, Hug LA, et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J. 2020;14:2907–22.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J. 2021;15:1810–25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.

    CAS 
    PubMed 

    Google Scholar 

  • Zhang L, Gong X, Wang L, Guo K, Cao S, Zhou Y. Science of the total environment metagenomic insights into the effect of thermal hydrolysis pre-treatment on microbial community of an anaerobic digestion system. Sci Total Environ. 2021;791:148096.

    CAS 
    PubMed 

    Google Scholar 

  • Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.

    CAS 
    PubMed 

    Google Scholar 

  • Uzun M, Alekseeva L, Krutkina M, Koziaeva V, Grouzdev D. Unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases. Sci Data. 2020;7:252.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tully BJ, Wheat CG, Glazer BT, Huber JA. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME J. 2018;12:1–16.

    CAS 
    PubMed 

    Google Scholar 

  • Kirillova NP, Sileva TM, Ul’yanova TY, Rozov SY, Il’yashenko MA, Makarov MI. Digital soil map of Chashnikovo training and experimental soil ecological center, Moscow State University. Mosc Univ Soil Sci Bull. 2015;70:58–65.

    Google Scholar 

  • Koziaeva VV, Alekseeva LM, Uzun MM, Leão P, Sukhacheva MV, Patutina EO, et al. Biodiversity of magnetotactic bacteria in the freshwater lake Beloe Bordukovskoe, Russia. Microbiology. 2020;89:348–58.

    CAS 

    Google Scholar 

  • Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    CAS 
    PubMed 

    Google Scholar 

  • Edgar RC, Flyvbjerg H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics. 2015;31:3476–82.

    CAS 
    PubMed 

    Google Scholar 

  • Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 2016. https://doi.org/10.1101/081257.

  • Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol. 2005;71:4117–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.

    CAS 
    PubMed 

    Google Scholar 

  • Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin HH, Liao YC. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016;6:12–9.

    Google Scholar 

  • Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaumeil P, Mussig AJ, Parks DH, Hugenholtz P. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.

    PubMed Central 

    Google Scholar 

  • Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ji R, Zhang W, Pan Y, Lin W. MagCluster: a tool for identification, annotation, and visualization of magnetosome gene clusters. Microbiol Resour Announc. 2022;11:e01031–21.

    CAS 
    PubMed Central 

    Google Scholar 

  • Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 2011;12:444.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.

    CAS 
    PubMed 

    Google Scholar 

  • Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL. 0003 3527 8101, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–900.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

    CAS 
    PubMed 

    Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler AVon, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.

    CAS 
    PubMed 

    Google Scholar 

  • Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, Hugenholtz P, et al. A rooted phylogeny resolves early bacterial evolution. Science. 2021;372:eabe0511.

    CAS 
    PubMed 

    Google Scholar 

  • Parks DH. https://github.com/dparks1134/CompareM.

  • Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett. 2019;366:fnz008.

    CAS 
    PubMed Central 

    Google Scholar 

  • Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA, et al. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J. 2018;12:1508–19.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urakawa H, Garcia JC, Nielsen JL, Le VQ, Kozlowski JA, Stein LY, et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int J Syst Evol Microbiol. 2015;65:242–50.

    CAS 
    PubMed 

    Google Scholar 

  • Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, et al. Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol. 2006;56:2517–22.

    CAS 
    PubMed 

    Google Scholar 

  • Bazylinski DA, Frankel RB, Konhauser KO. Modes of biomineralization of magnetite by microbes. Geomicrobiol J. 2007;24:465–75.

    CAS 

    Google Scholar 

  • Uzun M, Koziaeva V, Dziuba M, Leão P, Krutkina M, Grouzdev D. Detection of interphylum transfers of the magnetosome gene cluster in magnetotactic bacteria. Front Microbiol. 2022;13:945734.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996.

    CAS 
    PubMed 

    Google Scholar 

  • Murphy CL, Biggerstaff J, Eichhorn A, Ewing E, Shahan R, Soriano D, et al. Genomic characterization of three novel Desulfobacterota classes expand the metabolic and phylogenetic diversity of the phylum. Environ Microbiol. 2021;23:4326–43.

    CAS 
    PubMed 

    Google Scholar 

  • Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Denise R, Abby SS, Rocha EPC. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol. 2019;17:e3000390.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hennell James R, Deme JC, Kjӕr A, Alcock F, Silale A, Lauber F, et al. Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding motility. Nat Microbiol. 2021;6:221–33.

    CAS 
    PubMed 

    Google Scholar 

  • Nolan LM, Whitchurch CB, Barquist L, Katrib M, Boinett CJ, Mayho M, et al. A global genomic approach uncovers novel components for twitching motility-mediated biofilm expansion in Pseudomonas aeruginosa. Micro Genomics. 2018;4:e000229.

    Google Scholar 

  • Uzun M, Koziaeva V, Dziuba M, Alekseeva L, Grouzdev D. Mam protein trees. 2022. https://doi.org/10.6084/m9.figshare.c.6045158.v1.

  • Arnoux P, Siponen MI, Lefèvre CT, Ginet N, Pignol D. Structure and evolution of the magnetochrome domains: no longer alone. Front Microbiol. 2014;5:117.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D. Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol. 2010;77:208–24.

    CAS 
    PubMed 

    Google Scholar 

  • Wagner-Döbler I, Bennasar A, Vancanneyt M, Strömpl C, Brümmer I, Eichner C, et al. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl Environ Microbiol. 1998;64:3014–22.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ibekwe AM, Papiernik SK, Gan J, Yates SR, Crowley DE, Yang CH. Microcosm enrichment of 1,3-dichloropropene-degrading soil microbial communities in a compost-amended soil. J Appl Microbiol. 2001;91:668–76.

    CAS 
    PubMed 

    Google Scholar 

  • Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, et al. Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol. 2005;7:1426–41.

    CAS 
    PubMed 

    Google Scholar 

  • Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, et al. Comparative metagenomics of microbial communities. Science. 2005;308:554–7.

    CAS 
    PubMed 

    Google Scholar 

  • Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Jogler C, de Almeida LGP, et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ Microbiol. 2013;15:2712–35.

    PubMed 

    Google Scholar 

  • Wadhwa N, Berg HC. Bacterial motility: machinery and mechanisms. Nat Rev Microbiol. 2022;20:161–73.

    CAS 
    PubMed 

    Google Scholar 

  • Zhu K, Pan H, Li J, Yu-Zhang K, Zhang SD, Zhang WY, et al. Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res Microbiol. 2010;161:276–83.

    CAS 
    PubMed 

    Google Scholar 

  • Kaimer C, Zusman DR. Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY-like domains in FrzE and FrzZ. Mol Microbiol. 2016;100:379–95.

    CAS 
    PubMed 

    Google Scholar 

  • Kühn MJ, Talà L, Inclan YF, Patino R, Pierrat X, Vos I, et al. Mechanotaxis directs Pseudomonas aeruginosa twitching motility. Proc Natl Acad Sci USA. 2021;118:e2101759118.

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Coordinating climate and air-quality policies to improve public health

    Pesticide innovation takes top prize at Collegiate Inventors Competition