in

Temporal patterns of soil carbon emission in tropical forests under long-term nitrogen deposition

  • Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).

    Article 

    Google Scholar 

  • Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCC, 2015).

  • IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).

  • Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. Greenhouse gas emissions from soils—a review. Geochemistry 76, 327–352 (2016).

    Article 

    Google Scholar 

  • Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry: An Analysis of Global Change 3rd edn (Elsevier, 2013).

  • Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).

    Article 

    Google Scholar 

  • Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).

    Article 

    Google Scholar 

  • Du, E. Rise and fall of nitrogen deposition in the United States. Proc. Natl Acad. Sci. USA 113, E3594–E3595 (2016).

    Article 

    Google Scholar 

  • Schmitz, A. et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 244, 980–994 (2019).

    Article 

    Google Scholar 

  • Hietz, P. et al. Long-term change in the nitrogen cycle of tropical forests. Science 334, 664–666 (2011).

    Article 

    Google Scholar 

  • Fang, Y. T., Gundersen, P., Mo, J. M. & Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences 5, 339–352 (2008).

    Article 

    Google Scholar 

  • Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).

    Article 

    Google Scholar 

  • Liu, L. L. & Greaver, T. L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 13, 819–828 (2010).

    Article 

    Google Scholar 

  • LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    Article 

    Google Scholar 

  • Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).

    Article 

    Google Scholar 

  • Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).

    Article 

    Google Scholar 

  • Mo, J. et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol. 14, 403–412 (2008).

    Article 

    Google Scholar 

  • Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).

    Article 

    Google Scholar 

  • Zhong, Y., Yan, W. & Shangguan, Z. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Glob. Ecol. Biogeogr. 25, 475–488 (2016).

    Article 

    Google Scholar 

  • Deng, L. et al. Soil GHG fluxes are altered by N deposition: new data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools. Glob. Change Biol. 26, 2613–2629 (2020).

    Article 

    Google Scholar 

  • Hagedorn, F., Kammer, A., Schmidt, M. W. I. & Goodale, C. L. Nitrogen addition alters mineralization dynamics of 13C-depleted leaf and twig litter and reduces leaching of older DOC from mineral soil. Glob. Change Biol. 18, 1412–1427 (2012).

    Article 

    Google Scholar 

  • Du, Y. et al. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests. Glob. Change Biol. 20, 3222–3228 (2014).

    Article 

    Google Scholar 

  • Yan, T. et al. Negative effect of nitrogen addition on soil respiration dependent on stand age: evidence from a 7-year field study of larch plantations in northern China. Agr. For. Meteorol. 262, 24–33 (2018).

    Article 

    Google Scholar 

  • Xing, A. et al. Nonlinear responses of ecosystem carbon fluxes to nitrogen deposition in an old-growth boreal forest. Ecol. Lett. 25, 77–78 (2021).

    Article 

    Google Scholar 

  • Melillo, J. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).

    Article 

    Google Scholar 

  • Gao, Q. et al. Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study. Proc. Natl Acad. Sci. USA 117, 33317–33324 (2020).

    Article 

    Google Scholar 

  • Liu, X. J. et al. Nitrogen deposition and its ecological impact in China: an overview. Environ. Pollut. 159, 2251–2264 (2011).

    Article 

    Google Scholar 

  • Zhu, F. F., Yoh, M., Gilliam, F. S., Lu, X. K. & Mo, J. M. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions. PLoS ONE 8, e82661 (2013).

    Article 

    Google Scholar 

  • Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).

    Article 

    Google Scholar 

  • Priess, J. & Fölster, H. Microbial properties and soil respiration in submontane forests of Venezuelian Guyana: characteristics and response to fertilizer treatments. Soil Biol. Biochem. 33, 503–509 (2001).

    Article 

    Google Scholar 

  • He, T., Wang, Q., Wang, S. & Zhang, F. Nitrogen addition altered the effect of belowground C allocation on soil respiration in a subtropical forest. PLoS ONE 11, e0155881 (2016).

    Article 

    Google Scholar 

  • Fan, H. et al. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest. Plant Soil 379, 361–371 (2014).

    Article 

    Google Scholar 

  • Zheng, M. et al. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests. Biogeosciences 13, 3503–3517 (2016).

    Article 

    Google Scholar 

  • Lu, X. et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proc. Natl Acad. Sci. USA 118, e2020790118 (2021).

    Article 

    Google Scholar 

  • Zhou, G. Y. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417–1417 (2006).

    Article 

    Google Scholar 

  • Tian, J. et al. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Glob. Change Biol. 25, 3267–3281 (2019).

    Article 

    Google Scholar 

  • Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).

    Article 

    Google Scholar 

  • Lu, X. K. et al. Effect of simulated N deposition on soil exchangeable cations in three forest types of subtropical China. Pedosphere 19, 189–198 (2009).

    Article 

    Google Scholar 

  • Fang, Y., Gundersen, P., Mo, J. & Zhu, W. Nitrogen leaching in response to increased nitrogen inputs in subtropical monsoon forests in southern China. For. Ecol. Manage. 257, 332–342 (2009).

    Article 

    Google Scholar 

  • Chen, X. M. et al. Effects of nitrogen deposition on soil organic carbon fractions in the subtropical forest ecosystems of S. China. J. Plant Nutr. Soil Sci. 175, 947–953 (2012).

    Article 

    Google Scholar 

  • Fang, H. J. et al. 13C abundance, water-soluble and microbial biomass carbon as potential indicators of soil organic carbon dynamics in subtropical forests at different successional stages and subject to different nitrogen loads. Plant Soil 320, 243–254 (2009).

    Article 

    Google Scholar 

  • Liu, L. et al. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Sci. Rep. 5, 14378–14378 (2014).

    Article 

    Google Scholar 

  • Chen, H. et al. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: hypothesis testing. Funct. Ecol. 30, 305–313 (2015).

    Article 

    Google Scholar 

  • Lu, X., Mao, Q., Gilliam, F. S., Luo, Y. & Mo, J. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol. 20, 3790–3801 (2014).

    Article 

    Google Scholar 

  • Mao, Q. G. Impacts of Long-Term Nitrogen and Phosphorus Addition on Understory Plant Diversity in Subtropical Forests in Southern China. Doctoral Thesis, Univ. Chinese Academy of Sciences (2017).

  • Xing, A. J. et al. High-level nitrogen additions accelerate soil respiration reduction over time in a boreal forest. Ecol. Lett. https://doi.org/10.1111/ele.14065 (2022).

  • Cao, J. et al. Plant–bacteria–soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change. Funct. Ecol. 34, 723–734 (2020).

    Article 

    Google Scholar 

  • Mo, J. M., Brown, S., Peng, S. L. & Kong, G. H. Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. For. Ecol. Manage. 175, 573–583 (2003).

    Article 

    Google Scholar 

  • Huang, Z. L., Ding, M. M., Zhang, Z. P. & Yi, W. M. The hydrological processes and nitrogen dynamics in a monsoon evergreen broad-leafed forest of Dinghushan. Acta Phytoecol. Sin. 18, 194–199 (1994).

    Google Scholar 

  • Wright, R. F. & Rasmussen, L. Introduction to the NITREX and EXMAN projects. For. Ecol. Manage. 101, 1–7 (1998).

    Article 

    Google Scholar 

  • Gundersen, P. et al. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For. Ecol. Manage. 101, 37–55 (1998).

    Article 

    Google Scholar 

  • Aber, J. D. et al. Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecol. Appl. 3, 156–166 (1993).

    Article 

    Google Scholar 

  • Cleveland, C. C. & Townsend, A. R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc. Natl Acad. Sci. USA 103, 10316–10321 (2006).

    Article 

    Google Scholar 

  • Song, X. et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Sci. Adv. 6, eaaw5790 (2020).

    Article 

    Google Scholar 

  • Lu, X. et al. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems. Biogeosciences 10, 3931–3941 (2013).

    Article 

    Google Scholar 

  • Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).

    Article 

    Google Scholar 

  • Tang, X., Liu, S., Zhou, G., Zhang, D. & Zhou, C. Soil–atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Glob. Change Biol. 12, 546–560 (2006).

    Article 

    Google Scholar 

  • Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12, 403 (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Features of urban green spaces associated with positive emotions, mindfulness and relaxation

    Using game engines and “twins” to co-create stories of climate futures