in

Substrate and low intensity fires influence bacterial communities in longleaf pine savanna

  • Buisson, E., Archibald, S., Fidelis, A. & Suding, K. N. Ancient grasslands guide ambitious goals in grassland restoration. Science 377, 594–598. https://doi.org/10.1126/science.abo4605 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Archibald, S. et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13, 033003. https://doi.org/10.1088/1748-9326/aa9ead (2018).

    Article 

    Google Scholar 

  • Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411. https://doi.org/10.1016/j.tplants.2011.04.002 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571. https://doi.org/10.1016/j.soilbio.2019.107571 (2019).

    Article 

    Google Scholar 

  • Platt, W. J., Ellair, D. P., Huffman, J. M., Potts, S. E. & Beckage, B. Pyrogenic fuels produced by savanna trees can engineer humid savannas. Ecol. Monogr. 86, 352–372. https://doi.org/10.1002/ecm.1224 (2016).

    Article 

    Google Scholar 

  • He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010. https://doi.org/10.1111/brv.12544 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Hopkins, J. R., Huffman, J. M., Platt, W. J. & Sikes, B. A. Frequent fire slows microbial decomposition of newly deposited fine fuels in a pyrophilic ecosystem. Oecologia 193, 631–643. https://doi.org/10.1007/s00442-020-04699-5 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Platt, W. J., Orzell, S. L. & Slocum, M. G. Seasonality of fire weather strongly influences fire regimes in south Florida savanna-grassland landscapes. PLoS ONE 10, e0116952 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Semenova-Nelsen, T. A., Platt, W. J., Patterson, T. R., Huffman, J. & Sikes, B. A. Frequent fire reorganizes fungal communities and slows decomposition across a heterogeneous pine savanna landscape. New Phytol. 224, 916–927. https://doi.org/10.1111/nph.16096 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hansen, P. M., Semenova-Nelsen, T. A., Platt, W. J. & Sikes, B. A. Recurrent fires do not affect the abundance of soil fungi in a frequently burned pine savanna. Fungal Ecol. 42, 100852. https://doi.org/10.1016/j.funeco.2019.07.006 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Köster, K. et al. The long-term impact of low-intensity surface fires on litter decomposition and enzyme activities in boreal coniferous forests. Int. J. Wildland Fire 25, 618–618 (2016).

    Article 

    Google Scholar 

  • Beals, K. K., Scearce, A. E., Swystun, A. T. & Schweitzer, J. A. Belowground mechanisms for oak regeneration: Interactions among fire, soil microbes, and plant community alter oak seedling growth. For. Ecol. Manage. 503, 119774. https://doi.org/10.1016/j.foreco.2021.119774 (2022).

    Article 

    Google Scholar 

  • Huffman, M. S. & Madritch, M. D. Soil microbial response following wildfires in thermic oak-pine forests. Biol. Fertil. Soils 54, 985–997 (2018).

    Article 

    Google Scholar 

  • Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 143, 1–10 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. 105, 11512–11519. https://doi.org/10.1073/pnas.0801925105 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Badía, D. et al. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total Environ. 601–602, 1119–1128. https://doi.org/10.1016/j.scitotenv.2017.05.254 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Mino, L. et al. Watershed and fire severity are stronger determinants of soil chemistry and microbiomes than within-watershed woody encroachment in a tallgrass prairie system. FEMS Microbiol. Ecol. 97, fiab154. https://doi.org/10.1093/femsec/fiab154 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Mataix-Solera, J., García-Orenes, F., Bárcenas-Moreno, G. & Torres, M. Forest Fire Effects on Soil Microbiology.
    In Fire Effects on Soils and Restoration Strategies, (eds A. Cerdà & P. Robichaud) 133–175 (Science Publishers, Inc., 2009). https://doi.org/10.1201/9781439843338-c5.

  • McLauchlan, K. K. et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. 108, 2047–2069. https://doi.org/10.1111/1365-2745.13403 (2020).

    Article 

    Google Scholar 

  • Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18, 85–95 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Veldman, J. W. et al. Toward an old-growth concept for grasslands, savannas, and woodlands. Front. Ecol. Environ. 13, 154–162. https://doi.org/10.1890/140270 (2015).

    Article 

    Google Scholar 

  • Peet, R., Platt, W. & Costanza, J. Fire-maintained Pine Savannas and Woodlands of the Southeastern US Coastal Plain. in Ecology and Recovery of Eastern Old-Growth Forests (eds Barton, A. M. & Keeton, W. S.) Ch. 3, (2018).

  • Costanza, J. K., Terando, A. J., McKerrow, A. J. & Collazo, J. A. Modeling climate change, urbanization, and fire effects on Pinus palustris ecosystems of the southeastern US. J. Environ. Manage. 151, 186–199. https://doi.org/10.1016/j.jenvman.2014.12.032 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Ibanez, T. et al. Altered cyclone–fire interactions are changing ecosystems. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2022.08.005 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Robertson, K. M., Platt, W. J. & Faires, C. E. Patchy fires promote regeneration of longleaf pine (Pinus palustris Mill.) in pine savannas. Forests https://doi.org/10.3390/f10050367 (2019).

    Article 

    Google Scholar 

  • Platt, W. J., Evans, G. W. & Rathbun, S. L. The population dynamics of a long-lived conifer (Pinus palustris). Am. Nat. 131, 491–525 (1988).

    Article 

    Google Scholar 

  • Noel, J., Platt, W. J. & Moser, E. Structural characteristics of old- and second-growth stands of longleaf pine (Pinus palustris) in the gulf coastal region of the USA. Conserv. Biol. 12, 533–548. https://doi.org/10.1111/j.1523-1739.1998.96124.x (1998).

    Article 

    Google Scholar 

  • Ellair, D. P. & Platt, W. J. Fuel composition influences fire characteristics and understorey hardwoods in pine savanna. J. Ecol. 101, 192–201. https://doi.org/10.1111/1365-2745.12008 (2013).

    Article 

    Google Scholar 

  • Senn, S. et al. The functional biogeography of eDNA metacommunities in the post-fire landscape of the Angeles national forest. Microorganisms https://doi.org/10.3390/microorganisms10061218 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ammitzboll, H., Jordan, G. J., Baker, S. C., Freeman, J. & Bissett, A. Contrasting successional responses of soil bacteria and fungi to post-logging burn severity. For. Ecol. Manage. 508, 120059. https://doi.org/10.1016/j.foreco.2022.120059 (2022).

    Article 

    Google Scholar 

  • Rother, M. T., Huffman, J. M., Guiterman, C. H., Robertson, K. M. & Jones, N. A history of recurrent, low-severity fire without fire exclusion in southeastern pine savannas, USA. For. Ecol. Manage. 475, 118406. https://doi.org/10.1016/j.foreco.2020.118406 (2020).

    Article 

    Google Scholar 

  • Noss, R. F. et al. How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Divers. Distrib. 21, 236–244. https://doi.org/10.1111/ddi.12278 (2015).

    Article 

    Google Scholar 

  • Platt, W. J. Southeastern pine savannas. in Savannas, Barrens, and Rock Outcrop Plant Communities of North America, 23–51 (1999).

  • Fill, J. M., Platt, W. J., Welch, S. M., Waldron, J. L. & Mousseau, T. A. Updating models for restoration and management of fiery ecosystems. For. Ecol. Manage. 356, 54–63 (2015).

    Article 

    Google Scholar 

  • Fill, J. M., Davis, C. N. & Crandall, R. M. Climate change lengthens southeastern USA lightning-ignited fire seasons. Glob. Change Biol. 25, 3562–3569. https://doi.org/10.1111/gcb.14727 (2019).

    Article 

    Google Scholar 

  • Weakley, A. Flora of the Southern and Mid-Atlantic States, (2015).

  • Multivariate analysis of Ecological Data, Version 6.0 for Windows (MjM Software, Gleneden Beach, Oregon, USA, 2011).

  • Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516. https://doi.org/10.1073/pnas.1000080107 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Renaud, G., Stenzel, U., Maricic, T., Wiebe, V. & Kelso, J. deML: Robust demultiplexing of Illumina sequences using a likelihood-based approach. Bioinformatics 31, 770–772. https://doi.org/10.1093/bioinformatics/btu719 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, Z. et al. Conventional versus real-time quantitative PCR for rare species detection. Ecol. Evol. 8, 11799–11807. https://doi.org/10.1002/ece3.4636 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quast, C. et al. in Encyclopedia of Metagenomics: Genes, Genomes and Metagenomes: Basics, Methods, Databases and Tools (ed Nelson, K. E.) 626–635 (Springer US, 2015).

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261. https://doi.org/10.1128/AEM.00062-07 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balvočiūtė, M. & Huson, D. H. SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare?. BMC Genomics 18, 114. https://doi.org/10.1186/s12864-017-3501-4 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Article 

    Google Scholar 

  • Legendre, P. & Legendre, L. Numerical Ecology. (Elsevier, 2012).

  • Jorgensen, B. Exponential dispersion models. J. R. Stat. Soc. Ser. B (Methodol.) 49, 127–162 (1987).

    MathSciNet 
    MATH 

    Google Scholar 

  • Team, R. C. R: A Language and Environment for Statistical Computing (2019).

  • Wood, S. Package ‘mgcv’. R Package Version 1, 29 (2015).

    Google Scholar 

  • Jones, G. M. & Tingley, M. W. Pyrodiversity and biodiversity: A history, synthesis, and outlook. Divers. Distrib. 28, 386–403. https://doi.org/10.1111/ddi.13280 (2022).

    Article 

    Google Scholar 

  • Pfeiffer, B. et al. Leaf litter is the main driver for changes in bacterial community structures in the rhizosphere of ash and beech. Appl. Soil. Ecol. 72, 150–160 (2013).

    Article 

    Google Scholar 

  • Purahong, W. et al. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol. Ecol. https://doi.org/10.1111/mec.13739 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Angst, Š et al. Tree species identity alters decomposition of understory litter and associated microbial communities: A case study. Biol. Fertil. Soils 55, 525–538. https://doi.org/10.1007/s00374-019-01360-z (2019).

    Article 

    Google Scholar 

  • Liang, X., Yuan, J., Yang, E. & Meng, J. Responses of soil organic carbon decomposition and microbial community to the addition of plant residues with different C:N ratio. Eur. J. Soil Biol. 82, 50–55. https://doi.org/10.1016/j.ejsobi.2017.08.005 (2017).

    Article 

    Google Scholar 

  • Bonanomi, G. et al. Litter chemistry explains contrasting feeding preferences of bacteria, fungi, and higher plants. Sci. Rep. 7, 9208. https://doi.org/10.1038/s41598-017-09145-w (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, W., Niu, S., Liu, X. & Wang, J. Short-term response of the soil bacterial community to differing wildfire severity in Pinus tabulaeformis stands. Sci. Rep. 9, 1148. https://doi.org/10.1038/s41598-019-38541-7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ficken, C. D. & Wright, J. P. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions. PLoS ONE 12, e0186292 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bani, A. et al. The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil. Ecol. 126, 75–84. https://doi.org/10.1016/j.apsoil.2018.02.017 (2018).

    Article 

    Google Scholar 

  • Bowd, E. J. et al. Direct and indirect effects of fire on microbial communities in a pyrodiverse dry-sclerophyll forest. J. Ecol. https://doi.org/10.1111/1365-2745.13903 (2022).

    Article 

    Google Scholar 

  • Hart, S., Deluca, T., Newman, G., Mackenzie, M. D. & Boyle, S. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manage. https://doi.org/10.1016/j.foreco.2005.08.012 (2005).

    Article 

    Google Scholar 

  • López-Mondéjar, R. et al. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J. https://doi.org/10.1038/s41396-018-0084-2 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pérez-Valera, E., Verdú, M., Navarro Cano, J. & Goberna, M. Resilience to fire of phylogenetic diversity across biological domains. Mol. Ecol. https://doi.org/10.1111/mec.14729 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, F. et al. Change in soil bacterial community during secondary succession depend on plant and soil characteristics. CATENA 173, 246–252 (2019).

    Article 

    Google Scholar 

  • Mikita-Barbato, R. A., Kelly, J. J. & Tate, R. L. Wildfire effects on the properties and microbial community structure of organic horizon soils in the New Jersey Pinelands. Soil Biol. Biochem. 86, 67–76. https://doi.org/10.1016/j.soilbio.2015.03.021 (2015).

    Article 

    Google Scholar 

  • Adkins, J., Docherty, K. M., Gutknecht, J. L. M. & Miesel, J. R. How do soil microbial communities respond to fire in the intermediate term? Investigating direct and indirect effects associated with fire occurrence and burn severity. Sci. Total Environ. 745, 140957. https://doi.org/10.1016/j.scitotenv.2020.140957 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Ponder, F. Jr., Tadros, M. & Loewenstein, E. F. Microbial properties and litter and soil nutrients after two prescribed fires in developing savannas in an upland Missouri Ozark Forest. For. Ecol. Manage. 257, 755–763 (2009).

    Article 

    Google Scholar 

  • Gołębiewski, M. et al. Rapid microbial community changes during initial stages of pine litter decomposition. Microb. Ecol. 77, 56–75. https://doi.org/10.1007/s00248-018-1209-x (2019).

    Article 
    PubMed 

    Google Scholar 

  • Coetsee, C., Bond, W. J. & February, E. C. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia 162, 1027–1034 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Alcañiz, M., Outeiro, L., Francos, M. & Ubeda, X. Effects of prescribed fires on soil properties: A review. Sci Total Environ 613–614, 944–957. https://doi.org/10.1016/j.scitotenv.2017.09.144 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ferrenberg, S. et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 7, 1102–1111 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kranz, C. & Whitman, T. Surface charring from prescribed burning has minimal effects on soil bacterial community composition two weeks post-fire in jack pine barrens. Appl. Soil. Ecol. 144, 134–138 (2019).

    Article 

    Google Scholar 

  • Whitman, T., Woolet, J., Sikora, M., Johnson, D. B. & Whitman, E. Resilience in soil bacterial communities of the boreal forest from one to five years after wildfire across a severity gradient. Soil Biol. Biochem. 172, 108755. https://doi.org/10.1016/j.soilbio.2022.108755 (2022).

    Article 

    Google Scholar 

  • Ammitzboll, H., Jordan, G. J., Baker, S. C., Freeman, J. & Bissett, A. Diversity and abundance of soil microbial communities decline, and community compositions change with severity of post-logging fire. Mol. Ecol. 30, 2434–2448. https://doi.org/10.1111/mec.15900 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Maquia, I. S. A. et al. The nexus between fire and soil bacterial diversity in the African miombo woodlands of niassa special reserve, Mozambique. Microorganisms https://doi.org/10.3390/microorganisms9081562 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, J.-P., Chen, C. & Lewis, T. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest. Sci. Rep. 6, 19639. https://doi.org/10.1038/srep19639 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, R. J., Hallgren, S. W. & Wilson, G. W. T. Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. For. Ecol. Manage. 265, 241–247. https://doi.org/10.1016/j.foreco.2011.10.032 (2012).

    Article 

    Google Scholar 

  • Wang, Q., Zhong, M. & Wang, S. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For. Ecol. Manage. 271, 91–97. https://doi.org/10.1016/j.foreco.2012.02.006 (2012).

    Article 

    Google Scholar 

  • Brockway, D. G., Gatewood, R. G. & Paris, R. B. Restoring fire as an ecological process in shortgrass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons. J. Environ. Manage. 65, 135–152. https://doi.org/10.1006/jema.2002.0540 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Deka, H. & Mishra, P. Effect of fuel burning on the microbial population of soil. Folia Microbiol. 29, 330–336 (1984).

    Article 

    Google Scholar 

  • Weber, C., Lockhart, J., Charaska, E., Aho, K. & Lohse, K. Bacterial composition of soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity. Soil Biol. Biochem. 69, 242–250. https://doi.org/10.1016/j.soilbio.2013.11.010 (2014).

    Article 

    Google Scholar 

  • Choromanska, U. & DeLuca, T. H. Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biol. Biochem. 34, 263–271. https://doi.org/10.1016/S0038-0717(01)00180-8 (2002).

    Article 

    Google Scholar 

  • Saccá, M. L., Barra Caracciolo, A., Di Lenola, M. & Grenni, P. in Soil Biological Communities and Ecosystem Resilience. (eds Lukac, M., Grenni, P. & Gamboni, M.) 9–24 (Springer International Publishing, 2017).

  • Maquia, I. S. et al. Mining the microbiome of key species from African savanna woodlands: Potential for soil health improvement and plant growth promotion. Microorganisms 8(9), 1291 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pressler, Y., Moore, J. C. & Cotrufo, M. F. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128, 309–327. https://doi.org/10.1111/oik.05738 (2019).

    Article 

    Google Scholar 

  • Pérez-Valera, E. et al. Fire modifies the phylogenetic structure of soil bacterial co-occurrence networks. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13609 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Baldrian, P. et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258. https://doi.org/10.1038/ismej.2011.95 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Kobziar, L. N. et al. Pyroaerobiology: The aerosolization and transport of viable microbial life by wildland fire. Ecosphere 9, e02507. https://doi.org/10.1002/ecs2.2507 (2018).

    Article 

    Google Scholar 

  • Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242. https://doi.org/10.1038/nmicrobiol.2016.242 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lennon, J. T., Muscarella, M. E., Placella, S. A. & Lehmkuhl, B. K. How, when, and where relic DNA affects microbial diversity. MBio 9, e00637-00618. https://doi.org/10.1128/mBio.00637-18 (2018).

    Article 

    Google Scholar 

  • Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. 112, 10967–10972 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dolan, K. L., Peña, J., Allison, S. D. & Martiny, J. B. Phylogenetic conservation of substrate use specialization in leaf litter bacteria. PLoS ONE 12, e0174472 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woolet, J. & Whitman, T. Pyrogenic organic matter effects on soil bacterial community composition. Soil Biol. Biochem. 141, 107678 (2020).

    Article 

    Google Scholar 

  • Buscardo, E. et al. Spatio-temporal dynamics of soil bacterial communities as a function of Amazon forest phenology. Sci. Rep. 8, 1–13 (2018).

    Article 

    Google Scholar 

  • Tláskal, V., Zrůstová, P., Vrška, T. & Baldrian, P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol. Ecol. 93, fix157 (2017).

    Article 

    Google Scholar 

  • Shade, A. & Handelsman, J. Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol. 14, 4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x (2012).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    A healthy wind

    Vegetation assessments under the influence of environmental variables from the Yakhtangay Hill of the Hindu-Himalayan range, North Western Pakistan