in

Potential negative effects of the installation of video surveillance cameras in raptors’ nests

  • Ribic, C. A., Thompson, F. R. & Pietz, P. J. Video Surveillance of Nesting Birds (University of California Press, 2012).

    Book 

    Google Scholar 

  • O’Brien, T. G. & Kinnaird, M. F. A picture is worth a thousand words: The application of camera trapping to the study of birds. Bird Conserv. Int. 18, S144–S162 (2008).

    Article 

    Google Scholar 

  • Kristan, D. M., Golightly Jr, R. T. & Tomkiewicz Jr, S. M. A solar-powered transmitting video camera for monitoring raptor nests. Wildl. Soc. Bull. 24, 284–290 (1996).

    Google Scholar 

  • Grubb, T. An infrared video camera system for monitoring diurnal and nocturnal raptors. J. Raptor Res. 32, 290–296 (1998).

    Google Scholar 

  • Margalida, A. et al. A solar-powered transmitting video camera for monitoring cliff-nesting raptors. J. Field Ornithol. 77, 7–12 (2006).

    Article 

    Google Scholar 

  • Bolton, M., Butcher, N., Sharpe, F., Stevens, D. & Fisher, G. Remote monitoring of nests using digital camera technology. J. Field Ornithol. 78, 213–220 (2007).

    Article 

    Google Scholar 

  • Pierce, A. J. & Pobprasert, K. A portable system for continuous monitoring of bird nests using digital video recorders. J. Field Ornithol. 78, 322–328 (2007).

    Article 

    Google Scholar 

  • Benson, T. J., Brown, J. D. & Bednarz, J. C. Identifying predators clarifies predictors of nest success in a temperate passerine. J. Anim. Ecol. 79, 225–234 (2010).

    Article 

    Google Scholar 

  • Lewis, S. B., Fuller, M. R. & Titus, K. A comparison of 3 methods for assessing raptor diet during the breeding season. Wildl. Soc. Bull. 32, 373–385 (2004).

    Article 

    Google Scholar 

  • Rogers, A. S. Quantifying Northern Goshawk diets using remote cameras and observations from blinds. J. Raptor Res. 39, 303–309 (2005).

    ADS 

    Google Scholar 

  • Tornberg, R. & Reif, V. Assessing the diet of birds of prey: A comparison of prey items found in nests and images. Ornis Fenn. 84, 21 (2007).

    Google Scholar 

  • López-López, P. & Urios, V. Use of digital trail cameras to study Bonelli’s eagle diet during the nestling period. Ital. J. Zool. 77, 289–295 (2010).

    Article 

    Google Scholar 

  • Harrison, J. T., Kochert, M. N., Pauli, B. P. & Heath, J. A. Using motion-activated trail cameras to study diet and productivity of cliff-nesting Golden Eagles. J. Raptor Res. 53, 26–37 (2019).

    Article 

    Google Scholar 

  • McRae, S. B., Weatherhead, P. J. & Montgomerie, R. American robin nestlings compete by jockeying for position. Behav. Ecol. Sociobiol. 33, 101–106 (1993).

    Article 

    Google Scholar 

  • Nathan, A., Legge, S. & Cockburn, A. Nestling aggression in broods of a siblicidal kingfisher, the laughing kookaburra. Behav. Ecol. 12, 716–725 (2001).

    Article 

    Google Scholar 

  • Grivas, C. et al. An audio–visual nest monitoring system for the study and manipulation of siblicide in bearded vultures Gypaetus barbatus on the island of Crete (Greece). J. Ethol. 27, 105–116 (2009).

    Article 

    Google Scholar 

  • Gula, R., Theuerkauf, J., Rouys, S. & Legault, A. An audio/video surveillance system for wildlife. Eur. J. Wildl. Res. 56, 803–807 (2010).

    Article 

    Google Scholar 

  • Sanaiotti, T. M., Seixas, G. H., Duleba, S. & Martins, F. D. Camera trapping at harpy eagle nests: Interspecies interactions under predation risk. J. Raptor Res. 51, 72–78 (2017).

    Article 

    Google Scholar 

  • Allen, M. L., Inagaki, A. & Ward, M. P. Cannibalism in raptors: A review. J. Raptor Res. 54, 424–430 (2020).

    Article 

    Google Scholar 

  • Academia, M. H. & Dalgleish, H. J. Use of nest web cameras and citizen science to quantify osprey prey delivery rate and nest success. J. Raptor Res. 56, 212–219 (2022).

    Article 

    Google Scholar 

  • Gysel, L. W. & Davis, E. M. A simple automatic photographic unit for wildlife research. J. Wildl. Manag. 20, 451–453 (1956).

    Article 

    Google Scholar 

  • Royama, T. A device of an auto-cinematic food-recorder. Jpn. J. Ornithol. 15, 172–176 (1959).

    Article 

    Google Scholar 

  • Cox, W. A. et al. Development of camera technology for monitoring nests. In Chapter 15. Video Surveill. Nesting Birds Stud. Avian Biol. (eds Ribic, C. A. et al.) 185–210 (Univ. Calif. Press, 2012).

  • Sanders, M. D. & Maloney, R. F. Causes of mortality at nests of ground-nesting birds in the Upper Waitaki Basin, South Island, New Zealand: A 5-year video study. Biol. Conserv. 106, 225–236 (2002).

    Article 

    Google Scholar 

  • Reif, V. & Tornberg, R. Using time-lapse digital video recording for a nesting study of birds of prey. Eur. J. Wildl. Res. 52, 251–258 (2006).

    Article 

    Google Scholar 

  • McKinnon, L. & Bêty, J. Effect of camera monitoring on survival rates of High-Arctic shorebird nests. J. Field Ornithol. 80, 280–288 (2009).

    Article 

    Google Scholar 

  • Powell, L. A., Giovanni, M. D., Groepper, S. R., Reineke, M. & Schacht, W. H. Attendance Patterns and Survival of Western Meadowlark Nests (University of California Press, 2012).

    Book 

    Google Scholar 

  • Herranz, J., Yanes, M. & Suárez, F. Does Photo-Monitoring Affect Nest Predation? J. Field Ornithol. 73, 97–101 (2002).

    Article 

    Google Scholar 

  • Richardson, T. W., Gardali, T. & Jenkins, S. H. Review and meta-analysis of camera effects on avian nest success. J. Wildl. Manag. 73, 287–293 (2009).

    Article 

    Google Scholar 

  • Cain, S. L. Nesting activity time budgets of Bald Eagles in southeast Alaska. (1985).

  • García-Salgado, G. et al. Evaluation of trail-cameras for analyzing the diet of nesting raptors using the Northern Goshawk as a model. PLoS ONE 10, e0127585 (2015).

    Article 

    Google Scholar 

  • Swann, D. E., Kawanishi, K. & Palmer, J. Evaluating types and features of camera traps in ecological studies: a guide for researchers. In Camera Traps in Animal Ecology 27–43 (Springer, 2011).

  • Dykstra, C., Meyer, M. & Warnke, D. Bald Eagle reproductive performance following video camera placement. J. Raptor Res. 36, 136–139 (2002).

    Google Scholar 

  • Del Moral, J. C. & Molina, B. El águila perdicera en España, población reproductora en 2018 y método de censo (SEO/BirdLife, 2018).

    Google Scholar 

  • Generalitat Valenciana. Orden 2/2022, de 16 de febrero, de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica, por la que se actualizan los listados valencianos de especies protegidas de flora y fauna (2022).

  • Real, J. & Mañosa, S. Demography and conservation of western European Bonelli’s eagle Hieraaetus fasciatus populations. Biol. Conserv. 79, 59–66 (1997).

    Article 

    Google Scholar 

  • Hernández-Matías, A. et al. From local monitoring to a broad-scale viability assessment: A case study for the Bonelli’s Eagle in western Europe. Ecol. Monogr. 83, 239–261 (2013).

    Article 

    Google Scholar 

  • Rollan, A. et al. Guiding local-scale management to improve the conservation of endangered populations: The example of Bonelli’s Eagle Aquila fasciata. Bird Conserv. Int. 31, 395–409 (2021).

    Article 

    Google Scholar 

  • López-López, P., García-Ripollés, C. & Urios, V. Population size, breeding performance and territory quality of Bonelli’s Eagle Hieraaetus fasciatus in eastern Spain. Bird Study 54, 335–342 (2007).

    Article 

    Google Scholar 

  • López-López, P. Informe científico valoración de la inclusión del águila perdicera como especie en peligro de extinción en el Catálogo Valenciano de Especies de Fauna Amenazadahttps://doi.org/10.13140/RG.2.2.32806.04166 (2021).

  • López-López, P., Perona, A., Egea-Casas, O., Morant, J. & Urios, V. Tri-axial accelerometry shows differences in energy expenditure and parental effort throughout the breeding season in long-lived raptors. Curr. Zool. 68, 57–67 (2022).

    Article 

    Google Scholar 

  • Perona, A. M., Urios, V. & López-López, P. Holidays? Not for all Eagles have larger home ranges on holidays as a consequence of human disturbance. Biol. Conserv. 231, 59–66 (2019).

    Article 

    Google Scholar 

  • Morollón, S., Urios, V. & López-López, P. Fifteen days are enough to estimate home-range size in some long-lived resident eagles. J. Ornithol. 163, 849–854 (2022).

    Article 

    Google Scholar 

  • Stewart-Oaten, A., Murdoch, W. W. & Parker, K. R. Environmental impact assessment:” Pseudoreplication” in time?. Ecology 67, 929–940 (1986).

    Article 

    Google Scholar 

  • Underwood, A. Beyond BACI: The detection of environmental impacts on populations in the real, but variable, world. J. Exp. Mar. Biol. Ecol. 161, 145–178 (1992).

    Article 

    Google Scholar 

  • López-López, P., García-Ripollés, C., García-López, F., Aguilar, J. M. & Verdejo, J. Patrón de distribución del águila real Aquila chrysaetos y del águila-azor perdicera Hieraaetus fasciatus en la provincia de Castellón. Ardeola 51, 275–283 (2004).

    Google Scholar 

  • López-López, P., García-Ripollés, C., Aguilar, J. M., Garcia-López, F. & Verdejo, J. Modelling breeding habitat preferences of Bonelli’s eagle (Hieraaetus fasciatus) in relation to topography, disturbance, climate and land use at different spatial scales. J. Ornithol. 147, 97–106 (2006).

    Article 

    Google Scholar 

  • Gil-Sánchez, J. Effects of altitude and prey availability on the laying date of Bonelli’s Eagles (Hieraaetus fasciatus) in Granada (SE Spain). Ardeola 47, 1–8 (2000).

    Google Scholar 

  • Forsman, D. Flight Identification of Raptors of Europe, North Africa and the Middle East (Bloomsbury Publishing, 2016).

    Google Scholar 

  • Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Vol. 574 (Springer, 2009).

    Book 
    MATH 

    Google Scholar 

  • Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).

    Article 

    Google Scholar 

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar 

  • Barton, K. MuMIn: Multi-Model Inference. R package version 1.46.0. (2022).

  • Cutler, T. L. & Swann, D. E. Using remote photography in wildlife ecology: A review. Wildl. Soc. Bull. 27, 571–581 (1999).

    Google Scholar 

  • Richardson, C. T. & Miller, C. K. Recommendations for protecting raptors from human disturbance: A review. Wildl. Soc. Bull. 25, 634–638 (1997).

    Google Scholar 

  • Balbontin, J., Penteriani, V. & Ferrer, M. Variations in the age of mates as an early warning signal of changes in population trends? The case of Bonelli’s eagle in Andalusia. Biol. Conserv. 109, 417–423 (2003).

    Article 

    Google Scholar 

  • Martinez, J. A. et al. Breeding performance, age effects and territory occupancy in a Bonelli’s eagle Hieraaetus fasciatus population. Ibis 150, 223–233 (2008).

    Article 

    Google Scholar 

  • Sánchez-Zapata, J., Calvo, J., Carrete, M. & Martínez, J. Age and breeding success of a Golden Eagle Aquila chrysaetos population in southeastern Spain. Bird Study 47, 235–237 (2000).

    Article 

    Google Scholar 

  • Ferrer, M., Penteriani, V., Balbontin, J. & Pandolfi, M. The proportion of immature breeders as a reliable early warning signal of population decline: Evidence from the Spanish imperial eagle in Donana. Biol. Conserv. 114, 463–466 (2003).

    Article 

    Google Scholar 

  • Cano, A. & Parrinder, E. Studies of less familiar birds, Bonelli’s Eagle. Br. Birds 54, 422–427 (1961).

    Google Scholar 

  • Blondel, J., Coulon, L., Girerd, B. & Hortigue, M. Deux cents heures d’observation aupre‘s de l’aire de l’Aigle de Bonelli Hieraaetus fasciatus. Nos Oiseaux 30, 37–60 (1969).

    Google Scholar 

  • Vaucher, C. Notes sur 1’ethologie de I’Aigle de Bonelli. Nos Oiseaux 31, 101–111 (1971).

    Google Scholar 

  • Elósegui, J. Informe preliminar sobre alimentación de aves rapaces en Navarra y provincias limítrofes. Ardeola 19, 249–256 (1974).

    Google Scholar 

  • Cheylan, G. L. place trophique de l’Aigle de Bonelli Hieraaetus fasciatus dans les biocénoses méditerranéennes. Alauda 45, 1–15 (1977).

    Google Scholar 

  • Palma, L., Cancela da Fonseca, L. & Oliveira, L. L’alimentation de l’aigle de Bonelli Hieraaetus fasciatus dans la coˆte portugaise. Rapinyaires Mediterranis 2, 87–96 (1984).

    Google Scholar 

  • Real, J. Biases in diet study methods in the Bonelli’s eagle. J. Wildl. Manag. 60, 632–638 (1996).

    Article 

    Google Scholar 

  • Gil-Sánchez, J. M., Molino, F., Valenzuela, G. & Moleón, M. Demografía y alimentación del Águila-azor Perdicera (Hieraaetus fasciatus) en la provincia de Granada. Ardeola 47, 69–75 (2000).

    Google Scholar 

  • Ontiveros, D., Pleguezuelos, J. M. & Caro, J. Prey density, prey detectability and food habits: The case of Bonelli’s eagle and the conservation measures. Biol. Conserv. 123, 19–25 (2005).

    Article 

    Google Scholar 

  • Moleón, M. et al. Large-scale spatio-temporal shifts in the diet of a predator mediated by an emerging infectious disease of its main prey. J. Biogeogr. 36, 1502–1515 (2009).

    Article 

    Google Scholar 

  • Resano-Mayor, J. et al. Diet–demography relationships in a long-lived predator: From territories to populations. Oikos 125, 262–270 (2016).

    Article 

    Google Scholar 

  • Di Vittorio, M. et al. Long-term changes in the breeding period diet of Bonelli’s eagle (Aquila fasciata) in Sicily, Italy. Wildl. Res. 46, 409–414 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Food for thought, thought for food

    Palau’s warmest reefs harbor thermally tolerant corals that thrive across different habitats