Deng, Y., Li, X., Shi, F. & Hu, X. Woody plant encroachment enhanced global vegetation greening and ecosystem water-use efficiency. Glob. Ecol. Biogeogr. 30, 2337–2353 (2021).
Google Scholar
Brandt, J., Haynes, M., Kuemmerle, T., Waller, D. & Radeloff, V. Regime shift on the roof of the world: alpine meadows converting to shrublands in the southern Himalayas. Biol. Conserv. 158, 116–127 (2013).
Google Scholar
García Criado, M., Myers-Smith, I. H., Bjorkman, A. D., Lehmann, C. E. R. & Stevens, N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 29, 925–943 (2020).
Google Scholar
van Auken, O. Causes and consequences of woody plant encroachment into western North American grasslands. J. Environ. Manage. 90, 2931–2942 (2009).
Google Scholar
Bond, W. J., Midgley, G. F. & Woodward, F. I. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob. Chang. Biol. 9, 973–982 (2010).
Google Scholar
D’Odorico, P., Okin, G. S. & Bestelmeyer, B. T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5, 520–530 (2012).
Google Scholar
Kulmatiski, A. & Beard, K. H. Woody plant encroachment facilitated by increased precipitation intensity. Nat. Clim. Change 3, 833–837 (2013).
Google Scholar
Eldridge, D. J. & Soliveres, S. Are shrubs really a sign of declining ecosystem function? Disentangling the myths and truths of woody encroachment in Australia. Aust. J. Bot. 62, 594–608 (2015).
Google Scholar
Domine, F., Barrere, M. & Morin, S. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime. Biogeosciences 13, 6471–6486 (2016).
Google Scholar
Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).
Google Scholar
Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol. Lett. 14, 709–722 (2011).
Google Scholar
Archer, S. R. & Predick, K. I. An ecosystem services perspective on brush management: research priorities for competing land-use objectives. J. Ecol. 102, 1394–1407 (2014).
Google Scholar
Eldridge, D. J. & Ding, J. Remove or retain: ecosystem effects of woody encroachment and removal are linked to plant structural and functional traits. N. Phytol. 229, 2637–2646 (2020).
Google Scholar
Albrecht, M. A., Becknell, R. E. & Long, Q. Habitat change in insular grasslands: woody encroachment alters the population dynamics of a rare ecotonal plant. Biol. Conserv. 196, 93–102 (2016).
Google Scholar
Stanton, R. A. et al. Shrub encroachment and vertebrate diversity: a global meta-analysis. Glob. Ecol. Biogeogr. 27, 368–379 (2017).
Google Scholar
Archer, S. R. et al. in Rangeland Systems: Processes, Management and Challenges (ed. Briske, D.) 25–84 (Springer, 2017).
Anadón, J. D., Sala, O. E., Turner, B. L. & Bennett, E. M. Effect of woody-plant encroachment on livestock production in North and South America. Proc. Natl Acad. Sci. USA 111, 12948–12953 (2014).
Google Scholar
Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Eco. Evol. Syst. 47, 215–237 (2016).
Google Scholar
Teague, W. et al. Sustainable management strategies for mesquite rangeland: the Waggoner Kite project. Rangelands 19, 4–9 (1997).
Hamilton, W. T., McGinty, A., Ueckert, D. N., Hanselka, C. W. & Lee, M. R. Brush Management: Past, Present, Future (A&M Univ. Press, 2004).
Bestelmeyer, B. T. et al. The grassland–shrubland regime shift in the southwestern United States: misconceptions and their implications for management. BioScience 68, 678–690 (2018).
Google Scholar
Ding, J. & Eldridge, D. J. Contrasting global effects of woody plant removal on ecosystem structure, function and composition. Perspect. Plant Ecol. Evol. Syst. 39, 125460 (2019).
Google Scholar
Huxman, T. E. et al. Ecohydrological implication of woody plant encroachment. Ecology 86, 308–319 (2005).
Google Scholar
Schmutz, E. M., Cable, D. R. & Warwick, J. J. Effect of shrub removal on the vegetation of a semidesert grass-shrub range. Rangel. Ecol. Manag. 12, 34–37 (1959).
Google Scholar
Noble, J. C. & Walker, P. Integrated shrub management in semi-arid woodlands of eastern Australia: a systems-based decision support model. Agric. Syst. 88, 332–359 (2006).
Google Scholar
Eldridge, D. J. et al. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob. Chang. Biol. 26, 6003–6014 (2020).
Google Scholar
Bestelmeyer, B. T., Goolsby, D. P. & Archer, S. R. Spatial perspectives in state-and-transition models: a missing link to land management. J. Appl. Ecol. 48, 746–757 (2011).
Google Scholar
Riginos, C. & Young, T. P. Positive and negative effects of grass, cattle, and wild herbivores on Acacia saplings in an East African savanna. Oecologia 153, 985–995 (2007).
Google Scholar
Soliveres, S. et al. Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands. Glob. Ecol. Biogeogr. 23, 1408–1416 (2014).
Google Scholar
Soliveres, S. & Eldridge, D. J. Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function? Funct. Ecol. 28, 530–537 (2013).
Google Scholar
Maestre, F. T., Bowker, M. A., Puche, M., Hinojosa, M. B. & Escudero, A. Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecol. Lett. 12, 930–941 (2010).
Google Scholar
Abreu, R. C. R., Durigan, G., Melo, A. C. G., Pilon, N. A. L. & Hoffmann, W. A. Facilitation by isolated trees triggers woody encroachment and a biome shift at the savanna-forest transition. J. Appl. Ecol. 58, 2650–2660 (2021).
Google Scholar
North, M., Oakley, B., Fiegener, R. & Barbour, G. M. Influence of light and soil moisture on Sierran mixed-conifer understory communities. Plant Ecol. 177, 13–24 (2005).
Google Scholar
Muvengwi, J., Mbiba, M., Jimu, L., Mureva, A. & Dodzo, B. An assessment of the effectiveness of cut and ring barking as a method for control of invasive Acacia mearnsii in Nyanga National Park, Zimbabwe. For. Ecol. Manag. 427, 1–6 (2018).
Google Scholar
Abella, S. R. & Chiquoine, L. P. The good with the bad: when ecological restoration facilitates native and non-native species. Restor. Ecol. 27, 343–351 (2019).
Google Scholar
Bestelmeyer, B., Ward, J., Herrick, E. J. & Tugel, A. J. Fragmentation effects on soil aggregate stability in a patchy arid grassland. Rangel. Ecol. Manag. 59, 406–415 (2006).
Google Scholar
Okin, G. S., Gillette, D. A. & Herrick, J. E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid. Environ. 65, 253–275 (2006).
Google Scholar
Hu, X., Li, X. Y., Zhao, Y., Gao, Z. & Zhao, S. J. Changes in soil microbial community during shrub encroachment process in the Inner Mongolia grassland of northern China. Catena 202, 105230 (2021).
Google Scholar
D’Odorico, P. et al. Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan desert. Ecosphere 1, 1–11 (2010).
Google Scholar
Eldridge, D. J., Soliveres, S., Bowker, M. A. & Val, J. Grazing dampens the positive effects of shrub encroachment on ecosystem functions in a semi‐arid woodland. J. Appl. Ecol. 50, 1028–1038 (2013).
Google Scholar
Daryanto, S., Eldridge, D. J. & Throop, H. L. Managing semi-arid woodlands for carbon storage: grazing and shrub effects on above- and belowground carbon. Agric. Ecosyst. Environ. 169, 1–11 (2013).
Google Scholar
Paynter, Q. & Flanagan, G. J. Integrating herbicide and mechanical control treatments with fire and biological control to manage an invasive wetland shrub, Mimosa pigra. J. Appl. Ecol. 41, 615–629 (2004).
Google Scholar
Throop, H. L., Reichmann, L. G., Sala, O. E. & Archer, S. R. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland. Oecologia 169, 373–383 (2012).
Google Scholar
Brantley, S. T. & Young, D. R. Shifts in litterfall and dominant nitrogen sources after expansion of shrub thickets. Oecologia 155, 337–345 (2008).
Google Scholar
Ding, J. & Eldridge, D. J. The fertile island effect varies with aridity and plant patch type across an extensive continental gradient. Plant Soil 459, 173–183 (2020).
Google Scholar
Mihoč, M. et al. Soil under nurse plants is always better than outside: a survey on soil amelioration by a complete guild of nurse plants across a long environmental gradient. Plant Soil 408, 31–41 (2016).
Google Scholar
Ochoa-Hueso, R. et al. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol. 106, 242–253 (2018).
Google Scholar
Soliveres, S., Eldridge, D. J., Hemmings, F. & Maestre, F. T. Nurse plant effects on plant species richness in drylands: the role of grazing, rainfall and species specificity. Perspect. Plant Ecol. Evol. Syst. 14, 402–410 (2012).
Google Scholar
Schlesinger, W. et al. Biological feedbacks in global desertification. Science 147, 1043–1048 (1990).
Google Scholar
Ding, J. & Eldridge, D. J. Climate and plants regulate the spatial variation in soil multifunctionality across a climatic gradient. Catena 201, 105233 (2021).
Google Scholar
Ding, J., Travers, S. K., Delgado-Baquerizo, M. & Eldridge, D. J. Multiple trade-offs regulate the effects of woody plant removal on biodiversity and ecosystem functions in global rangelands. Glob. Chang. Biol. 26, 709–720 (2020).
Google Scholar
De Soyza, A. G., Whitford, W. G., Martinez-Meza, E. & Van Zee, J. W. Variation in creosotebush (Larrea tridentata) canopy morphology in relation to habitat, soil fertility and associated annual plant communities. Am. Nat. 137, 13–26 (1997).
Google Scholar
Breemen, N. V. Nutrient cycling strategies. Plant Soil 168, 321–326 (1995).
Li, J., Gilhooly, W. P. III., Okin, G. S. & Blackwell, J. III. Abiotic processes are insufficient for fertile island development: a 10-year artificial shrub experiment in a desert grassland. Geophys. Res. Lett. 44, 2245–2253 (2017).
Google Scholar
Ward, D. et al. Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma 310, 153–162 (2018).
Google Scholar
Miwa, C. Persistence of Western Juniper Resource Islands following Canopy Removal. MSc thesis, Oregon State Univ. (2007).
Zhou, L. et al. Shrub-encroachment induced alterations in input chemistry and soil microbial community affect topsoil organic carbon in an Inner Mongolian grassland. Biogeochemistry 136, 311–324 (2017).
Google Scholar
Kwok, A. B. C. & Eldridge, D. J. The influence of shrub species and fine-scale plant density on arthropods in a semiarid shrubland. Rangel. J. 38, 381–389 (2016).
Google Scholar
Young, J. A., Evans, R. A. & Rimbey, C. Weed control and revegetation following western juniper (Juniperus occidentalis) control. Weed Sci. 33, 513–517 (1985).
Google Scholar
Wiedemann, H. T. & Kelly, P. J. Turpentine (Eremophila sturtii) control by mechanical uprooting. Rangel. J. 23, 173–181 (2001).
Google Scholar
Bowker, M. A., Belnap, J., Chaudhary, V. B. & Johnson, N. C. Revisiting classic water erosion models in drylands: the strong impact of biological soil crusts. Soil Biol. Biochem. 40, 2309–2316 (2008).
Google Scholar
Ding, J. & Eldridge, D. J. Biotic and abiotic effects on biocrust cover vary with microsite along an extensive aridity gradient. Plant Soil 450, 429–441 (2020).
Google Scholar
Blaum, N., Seymour, C., Rossmanith, E., Schwager, M. & Jeltsch, F. Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands: identification of suitable indicators. Biodivers. Conserv. 18, 1187–1199 (2009).
Google Scholar
Eldridge, D. J., Poore, A., Ruiz-Colmenero, M., Letnic, M. & Soliveres, S. Ecosystem structure, function and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 26, 1273–1283 (2016).
Google Scholar
Maestre, F. T. & Cortina, J. Insights into ecosystem composition and function in a sequence of degraded semiarid steppes. Restor. Ecol. 12, 494–502 (2004).
Google Scholar
Nakagawa, S. in Ecological Statistics: Contemporary Theory and Application (eds Fox, G. A. et al.) Ch. 4 (Oxford Univ. Press, 2015).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).
Google Scholar
Tavşanoğlu, Ç. & Pausas, J. G. A functional trait database for mediterranean basin plants. Sci. Data 5, 180135 (2018).
Google Scholar
The PLANTS Database (USDA, 2019); https://plants.usda.gov/
Kattge, J. et al. TRY—a global database of plant traits. Glob. Chang. Biol. 17, 2905–2935 (2011).
Google Scholar
Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
Google Scholar
Mallen-Cooper, M. et al. Global synthesis reveals strong multifaceted effects of eucalypts on soils. Glob. Ecol. Biogeogr. 31, 1667–1678 (2022).
Google Scholar
Chen, X., Chen, H. Y. & Chang, S. X. Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nat. Ecol. Evol. 6, 1112–1121 (2022).
Google Scholar
Noble, D. W. A., Lagisz, M., O’dea, R. E. & Nakagawa, S. Nonindependence and sensitivity analyses in ecological and evolutionary meta-analyses. Mol. Ecol. 26, 2410–2425 (2017).
Google Scholar
Nakagawa, S. & Santos, E. Methodological issues and advances in biological meta-analysis. Ecol. Evol. 26, 1253–1274 (2012).
Google Scholar
Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge Univ. Press, 2006).
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
Google Scholar
Archer, E. rfPermute v2.1.1 (R Foundation for Statistical Computing, 2010).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
Stefan, V. & Levin, S. plotbiomes: plot Whittaker biomes with ggplot2 (R package version 0009001, 2021).
Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R. J. 5, 144–161 (2013).
Google Scholar
R Core Team. MOSR connections (R Foundation for Statistical Computing, 2013).
Source: Ecology - nature.com