Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).
Google Scholar
Gorham, E., Vitousek, P. M. & Reiners, W. A. The regulation of element budgets over the course of terrestrial ecosystem succession. Annu. Rev. Ecol. Syst. 10, 53–84 (1979).
Google Scholar
Corman, J. R. et al. Foundations and frontiers of ecosystem science: Legacy of a classic paper (Odum 1969). Ecosystems 22, 1160–1172. https://doi.org/10.1007/s10021-018-0316-3 (2019).
Google Scholar
Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Change Biol. 22, 76–91. https://doi.org/10.1111/gcb.12985 (2016).
Google Scholar
Kominoski, J. S., Gaiser, E. E. & Baer, S. G. Advancing theories of ecosystem development through long-term ecological research. Bioscience 68, 554–562. https://doi.org/10.1093/biosci/biy070 (2018).
Google Scholar
Balch, J. K., Bradley, B. A., D’Antonio, C. M. & Gómez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Change Biol. 19, 173–183. https://doi.org/10.1111/gcb.12046 (2013).
Google Scholar
Abatzoglou, J. T. & Kolden, C. A. Climate change in Western US deserts: Potential for increased wildfire and invasive annual grasses. Rangeland Ecol. Manag. 64(5), 471–478 (2011).
Google Scholar
Shi, H. et al. Historical cover trends in a sagebrush steppe ecosystem from 1985 to 2013: Links with climate, disturbance, and management. Ecosystems 21, 913–929. https://doi.org/10.1007/s10021-017-0191-3 (2018).
Google Scholar
Seyfried, M. S. & Wilcox, B. P. Scale and the nature of spatial variability: Field examples having implications for hydrologic modeling. Water Resour. Res. 31, 173–184. https://doi.org/10.1029/94WR02025 (1995).
Google Scholar
Gasch, C. K., Huzurbazar, S. V. & Stahl, P. D. Description of vegetation and soil properties in sagebrush steppe following pipeline burial, reclamation, and recovery time. Geoderma 265, 19–26. https://doi.org/10.1016/j.geoderma.2015.11.013 (2016).
Google Scholar
Huber, D. P. et al. Vegetation and precipitation shifts interact to alter organic and inorganic carbon storage in desert soils. Ecosphere 10, e02655. https://doi.org/10.1002/ecs2.2655 (2019).
Google Scholar
Knight, D. H., Jones, G. P., Reiners, W. A. & Romme, W. H. Mountains and Plains: The Ecology of Wyoming Landscapes (Yale University Press, 2014).
Patton, N. R., Lohse, K. A., Seyfried, M. S., Godsey, S. E. & Parsons, S. Topographic controls on soil organic carbon on soil mantled landscapes. Sci. Rep. 9, 6390. https://doi.org/10.1038/s41598-019-42556-5 (2019).
Google Scholar
Schwabedissen, S. G., Lohse, K. A., Reed, S. C., Aho, K. A. & Magnuson, T. S. Nitrogenase activity by biological soil crusts in cold sagebrush steppe ecosystems. Biogeochemistry 134, 57–76. https://doi.org/10.1007/s10533-017-0342-9 (2017).
Google Scholar
You, Y. et al. Biological soil crust bacterial communities vary along climatic and shrub cover gradients within a sagebrush steppe ecosystem. Front. Microbiol. 12, 2365. https://doi.org/10.3389/fmicb.2021.569791 (2021).
Google Scholar
Burke, I. C., Reiners, W. A. & Olson, R. K. Topographic control of vegetation in a mountain big sagebrush steppe. Vegetation 84, 77–86 (1989).
Google Scholar
Poulos, M. J., Pierce, J. L., Flores, A. N. & Benner, S. G. Hillslope asymmetry maps reveal widespread, multi-scale organization. Geophys. Res. Lett. 39, 6. https://doi.org/10.1029/2012GL051283 (2012).
Google Scholar
Smith, T. & Bookhagen, B. Climatic and biotic controls on topographic asymmetry at the global scale. J. Geophys. Res.: Earth Surf. 126, e2020JF005692. https://doi.org/10.1029/2020JF005692Received22 (2021).
Google Scholar
Seyfried, M., Link, T., Marks, D. & Murdock, M. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing. Vadose Zone J. 15, 6. https://doi.org/10.2136/vzj2015.09.0128 (2016).
Google Scholar
Chambers, J. C. et al. Resilience and resistance of sagebrush ecosystems: Implications for state and transition models and management treatments. Rangel. Ecol. Manage. 67, 440–454. https://doi.org/10.2111/REM-D-13-00074.1 (2014).
Google Scholar
Chambers, J. C. et al. Operationalizing resilience and resistance concepts to address invasive grass-fire cycles. Front. Ecol. Evol. 7, 2369. https://doi.org/10.3389/fevo.2019.00185 (2019).
Google Scholar
Boehm, A. R. et al. Slope and aspect effects on seedbed microclimate and germination timing of fall-planted seeds. Rangel. Ecol. Manage. 75, 58–67. https://doi.org/10.1016/j.rama.2020.12.003 (2021).
Google Scholar
Sankey, J. B., Germino, M. J., Sankey, T. T. & Hoover, A. N. Fire effects on the spatial patterning of soil properties in sagebrush steppe, USA: A meta-analysis. Int. J. Wildl. Fire 21, 545–556. https://doi.org/10.1071/WF11092 (2012).
Google Scholar
Fellows, A., Flerchinger, G., Seyfried, M. S. & Lohse, K. A. Rapid recovery of mesic mountain big sagebrush gross production and respiration following prescribed fire. Ecosystems 21, 1283–1294. https://doi.org/10.1007/s10021-017-0218-9 (2018).
Google Scholar
Vega, S. P. et al. Interaction of wind and cold-season hydrologic processes on erosion from complex topography following wildfire in sagebrush steppe. Earth Surf. Process. Landforms https://doi.org/10.1002/esp.4778 (2019).
Google Scholar
Xie, J., Li, Y., Zhai, C., Li, C. & Lan, Z. CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ. Geol. 56, 953–961 (2009).
Google Scholar
Stanbery, C., Pierce, J. L., Benner, S. G. & Lohse, K. On the rocks: Quantifying storage of inorganic soil carbon on gravels and determining pedon-scale variability. CATENA 157, 436–442. https://doi.org/10.1016/j.catena.2017.06.011 (2017).
Google Scholar
Stanbery, C. et al. Controls on the presence and concentration of soil inorganic carbon in a semi-arid watershed. CATENA https://doi.org/10.2139/ssrn.4267018 (2023).
Google Scholar
Cerling, T. E. & Quade, J. Stable carbon and oxygen isotopes in soil carbonates. Geophys. Monogr. 78, 217–231 (1993).
Google Scholar
Tappa, D. J., Kohn, M. J., McNamara, J. P., Benner, S. G. & Flores, A. N. Isotopic composition of precipitation in a topographically steep, seasonally snow-dominated watershed and implications of variations from the global meteoric water line. Hydrol. Process. 30, 4582–4592. https://doi.org/10.1002/hyp.10940 (2016).
Google Scholar
Salomons, W., Goudie, A. & Mook, W. G. Isotopic composition of calcrete deposits from Europe, Africa and India. Earth Surf. Process. 3, 43–57. https://doi.org/10.1002/esp.3290030105 (1978).
Google Scholar
Salomons, W. & Mook, W. G. In Handbook of Environmental Isotope Geochemistry (eds P. Fritz & J. Fontes) Ch. 6, 241–269 (Elsevier, 1986).
Bodí, M. B. et al. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127. https://doi.org/10.1016/j.earscirev.2013.12.007 (2014).
Google Scholar
Kéraval, B. et al. Soil carbon dioxide emissions controlled by an extracellular oxidative metabolism identifiable by its isotope signature. Biogeosciences 13, 6353–6362. https://doi.org/10.5194/bg-13-6353-2016 (2016).
Google Scholar
Goforth, B. R., Graham, R. C., Hubbert, K. R., Zanner, C. W. & Minnich, R. A. Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California. Int. J. Wildland Fire 14, 343–354 (2005).
Google Scholar
Glossner, K. L. et al. Long-term suspended sediment and particulate organic carbon yields from the Reynolds Creek Experimental Watershed and Critical Zone Observatory. Hydrol. Process. 36, e14484. https://doi.org/10.1002/hyp.14484 (2022).
Google Scholar
Seyfried, M. S. et al. Reynolds creek experimental watershed and critical zone observatory. Vadoze Zone J. 17, 180129. https://doi.org/10.2136/vzj2018.07.0129 (2018).
Google Scholar
McIntyre, D. H. Cenozoic geology of the Reynolds Creek Experimental Watershed, Owyhee County, Idaho (Idaho Bureau of Mines and Geology, 1972).
Earth Resources Observation and Science (EROS) Center, U. Image of the week: Burned Area Analysis for the Soda Fire, Idaho, https://eros.usgs.gov/media-gallery/image-of-the-week/burned-area-analysis-the-soda-fire-idaho (2015).
Jenny, H. Factors of Soil Formation (McGraw-Hill, 1941).
Google Scholar
Kormos, P. R. et al. 31 years of hourly spatially distributed air temperature, humidity, and precipitation amount and phase from Reynolds Critical Zone Observatory. Earth Syst. Sci. Data 10, 1197–1205. https://doi.org/10.5194/essd-10-1197-2018 (2018).
Google Scholar
Thomas, G. W. In Methods in Soil Analysis. Part 3. Chemical Methods (ed Sparks, D. L. ) (Soil Science Society of America and American Society of Agronomy, 1996).
Brodie, C. R. et al. Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem. Geol. 282, 67–83. https://doi.org/10.1016/j.chemgeo.2011.01.007 (2011).
Google Scholar
Patton, N. P., Lohse, K. A., Seyfried, M. S., Will, R. & Benner, S. G. Lithology and coarse fraction adjusted bulk density estimates for determining total organic carbon stocks in dryland soils. Geoderma 337, 844–852. https://doi.org/10.1016/j.geoderma.2018.10.036 (2019).
Google Scholar
McGuire, L. A., Rasmussen, C., Youberg, A. M., Sanderman, J. & Fenerty, B. Controls on the Spatial distribution of near-surface pyrogenic carbon on hillslopes 1 year following wildfire. J. Geophys. Res.: Earth Surf. 126, e2020JF005996. https://doi.org/10.1029/2020JF005996 (2021).
Google Scholar
Jiménez-González, M. A. et al. Spatial distribution of pyrogenic carbon in Iberian topsoils estimated by chemometric analysis of infrared spectra. Sci. Total Env. 790, 148170. https://doi.org/10.1016/j.scitotenv.2021.148170 (2021).
Google Scholar
Baldock, J. A. et al. Quantifying the allocation of soil organic carbon to biologically significant fractions. Soil Res. 51, 561–576. https://doi.org/10.1071/SR12374 (2013).
Google Scholar
Sanderman, J. et al. Soil organic carbon fractions in the Great Plains of the United States: An application of mid-infrared spectroscopy. Biogeochemistry 156, 97–114. https://doi.org/10.1007/s10533-021-00755-1 (2021).
Google Scholar
Sherrod, L. A., Dunn, G., Peterson, G. A. & Kolberg, R. L. Inorganic carbon analysis by modified pressure-calcimeter method. Soil Sci. Soc. Am. J. 66, 299–305 (2002).
Google Scholar
Mikutta, R., Kleber, M., Kaiser, K. & Jahn, R. Review. Soil Sci. Soc. Am. J. 69, 120–135. https://doi.org/10.2136/sssaj2005.0120 (2005).
Google Scholar
Risk, D., Nickerson, N., Creelman, C., McArthur, G. & Owens, J. Forced Diffusion soil flux: A new technique for continuous monitoring of soil gas efflux. Agric. For. Meteorol. 151, 1622–1631. https://doi.org/10.1016/j.agrformet.2011.06.020 (2011).
Google Scholar
Fierer, N. & Schimel, J. P. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 34, 777–787. https://doi.org/10.1016/S0038-0717(02)00007-X (2002).
Google Scholar
Dane, J. H., Topp, G. C. & Campbell, G. S. In Methods of Soil Analysis: Physical Methods. Vol. 4 (ed SSSA) 721–738 (2002).
Source: Ecology - nature.com