Wilson, E. O. The Insect Societies (Oxford University Press, 1971).
Beshers, S. N. & Fewell, J. H. Models of division of labor in social insects. Annu. Rev. Entomol. 46, 413–440 (2001).
Google Scholar
Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 4, 287–293 (1982).
Tallamy, D. W. Insect parental care. Bioscience 34, 20–24. https://doi.org/10.2307/1309421 (1984).
Google Scholar
Queller, D. C. Extended parental care and the origin of eusociality. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 256, 105–111. https://doi.org/10.1098/rspb.1994.0056 (1994).
Google Scholar
Bigley, W. S. & Vinson, S. B. Characterization of a brood pheromone isolated from the sexual brood of the imported fire ant, Solenopsis invicta 1,2. Ann. Entomol. Soc. Am. 68, 301–304 (1975).
Google Scholar
Endler, A. et al. Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc. Natl. Acad. Sci. USA 101, 2945–2950. https://doi.org/10.1073/pnas.0308447101 (2004).
Google Scholar
Maisonnasse, A., Lenoir, J. C., Beslay, D., Crauser, D. & Le Conte, Y. E-beta-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS ONE 5, e13531. https://doi.org/10.1371/journal.pone.0013531 (2010).
Google Scholar
Schultner, E., Oettler, J. & Helantera, H. The role of brood in eusocial hymenoptera. Q. Rev. Biol. 92, 39–78. https://doi.org/10.1086/690840 (2017).
Google Scholar
Amdam, G. V., Hartfelder, K., Norberg, K., Hagen, A. & Omholt, S. W. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): A factor in colony loss during overwintering? J. Econ. Entomol. 97, 741–747 (2004).
Calabi, P. & Traniello, J. F. Behavioral flexibility in age castes of the ant Pheidole dentata. J. Insect Behav. 2, 663–677 (1989).
Gordon, D. W. Dynamics of task switching in harvester ants. Anim. Behav. 38, 194–204 (1989).
Robinson, G. E. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665. https://doi.org/10.1146/annurev.en.37.010192.003225 (1992).
Google Scholar
Robinson, E. J., Feinerman, O. & Franks, N. R. Flexible task allocation and the organization of work in ants. Proc. R. Soc. B: Biol. Sci. 276, 4373–4380 (2009).
Nijhout, H. F. & Wheeler, D. E. Juvenile-hormone and the physiological-basis of Insect polymorphisms. Q. Rev. Biol. 57, 109–133. https://doi.org/10.1086/412671 (1982).
Google Scholar
Herb, B. R. et al. Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat. Neurosci. 15, 1371–1373. https://doi.org/10.1038/nn.3218 (2012).
Google Scholar
Kensuke, N. Age polyethism, idiosyncrasy and behavioural flexibility in the queenless ponerine ant, Diacamma sp. J. Ethol. 13, 113–123 (1995).
Kensuke, N. Does behavioral flexibility compensate or constrain colony productivity? Relationship among age structure, labor allocation, and production of workers in ant colonies. J. Insect Behav. 9, 557–569 (1996).
Shimoji, H., Kasutani, N., Ogawa, S. & Hojo, M. K. Worker propensity affects flexible task reversion in an ant. Behav. Ecol. 74, 1–8 (2020).
Bernadou, A., Busch, J. & Heinze, J. Diversity in identity: Behavioral flexibility, dominance, and age polyethism in a clonal ant. Behav. Ecol. Sociobiol. 69, 1365–1375 (2015).
Kohlmeier, P., Feldmeyer, B. & Foitzik, S. Vitellogenin-like A—Associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLoS Biol. 16, e2005747 (2018).
Tripet, F. & Nonacs, P. Foraging for work and age-based polyethism: The roles of age and previous experience on task choice in ants. Ethology 110, 863–877 (2004).
Kohlmeier, P., Alleman, A. R., Libbrecht, R., Foitzik, S. & Feldmeyer, B. Gene expression is more strongly associated with behavioural specialisation than with age or fertility in ant workers. Mol. Ecol. https://doi.org/10.1111/mec.14971 (2018).
Google Scholar
Levenbook, L. & Bauer, A. C. The fate of the larval storage protein calliphorin during adult development of Calliphora vicina. Insect Biochem. 14, 77–86 (1984).
Google Scholar
Zhou, X., Oi, F. M. & Scharf, M. E. Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc. Natl. Acad. Sci. 103, 4499–4504 (2006).
Google Scholar
Zhou, X., Tarver, M. R., Bennett, G., Oi, F. & Scharf, M. Two hexamerin genes from the termite Reticulitermes flavipes: Sequence, expression, and proposed functions in caste regulation. Gene 376, 47–58 (2006).
Google Scholar
Hawkings, C., Calkins, T. L., Pietrantonio, P. V. & Tamborindeguy, C. Caste-based differential transcriptional expression of hexamerins in response to a juvenile hormone analog in the red imported fire ant (Solenopsis invicta). PLoS ONE 14, e0216800 (2019).
Google Scholar
Hoffman, E. A. & Goodisman, M. A. Gene expression and the evolution of phenotypic diversity in social wasps. BMC Biol. 5, 1–9 (2007).
Hunt, J. H., Buck, N. A. & Wheeler, D. E. Storage proteins in vespid wasps: Characterization, developmental pattern, and occurrence in adults. J. Insect Physiol. 49, 785–794 (2003).
Google Scholar
Colgan, T. J. et al. Polyphenism in social insects: Insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris. BMC Genom. 12, 1–20 (2011).
Cremer, S., Armitage, S. A. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, R693–R702 (2007).
Google Scholar
Cremer, S., Pull, C. D. & Fuerst, M. A. Social immunity: Emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123 (2018).
Google Scholar
Danihlík, J., Aronstein, K. & Petřivalský, M. Antimicrobial peptides: A key component of honey bee innate immunity: Physiology, biochemistry, and chemical ecology. J. Apic. Res. 54, 123–136 (2015).
Koch, S. I. et al. Caste-specific expression patterns of immune response and chemosensory related genes in the leaf-cutting ant, Atta vollenweideri. PLoS ONE 8, e81518 (2013).
Google Scholar
Chardonnet, F. et al. Food searching behaviour of a Lepidoptera pest species is modulated by the foraging gene polymorphism. J. Exp. Biol. 217, 3465–3473 (2014).
Scheiner, R., Page, R. E. Jr. & Erber, J. Responsiveness to sucrose affects tactile and olfactory learning in preforaging honey bees of two genetic strains. Behav. Brain Res. 120, 67–73 (2001).
Google Scholar
Wang, Z. et al. Visual pattern memory requires foraging function in the central complex of Drosophila. Learn. Mem. 15, 133–142 (2008).
Zhou, Y., Lei, Y., Lu, L. & He, Y. Temperature-and food-dependent foraging gene expression in foragers of the red imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae). Physiol. Entomol. 45, 1–6 (2020).
Ingram, K. K. et al. Context-dependent expression of the foraging gene in field colonies of ants: The interacting roles of age, environment and task. Proc. R. Soc. B: Biol. Sci. 283, 20160841 (2016).
Ingram, K. K., Oefner, P. & Gordon, D. M. Task-specific expression of the foraging gene in harvester ants. Mol. Ecol. 14, 813–818 (2005).
Google Scholar
Lucas, C. & Sokolowski, M. B. Molecular basis for changes in behavioral state in ant social behaviors. Proc. Natl. Acad. Sci. 106, 6351–6356 (2009).
Google Scholar
Ben-Shahar, Y. The foraging gene, behavioral plasticity, and honeybee division of labor. J. Comp. Physiol. A. 191, 987–994 (2005).
Google Scholar
Daugherty, T., Toth, A. & Robinson, G. Nutrition and division of labor: Effects on foraging and brain gene expression in the paper wasp Polistes metricus. Mol. Ecol. 20, 5337–5347 (2011).
Google Scholar
Morrison, L. W., Porter, S. D., Daniels, E. & Korzukhin, M. D. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol. Invasions 6, 183–191 (2004).
Valles, S. M., Wetterer, J. K. & Porter, S. D. The red imported fire ant (Hymenoptera: Formicidae) in the West Indies: Distribution of natural enemies and a possible test bed for release of self-sustaining biocontrol agents. Fls. Entomol. 98, 1101–1105 (2015).
Greenberg, L., Vinson, S. & Ellison, S. Nine-year study of a field containing both monogyne and polygyne red imported fire ants (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 85, 686–695 (1992).
Keller, L. & Ross, K. G. Selfish genes: A green beard in the red fire ant. Nature 394, 573–575 (1998).
Google Scholar
Vinson, S. B. Impact of the invasion of the imported fire ant. Insect Sci. 20, 439–455 (2013).
Tschinkel, W. R. The Fire Ants (Harvard University Press, 2006).
Cassill, D. L. & Tschinkel, W. R. Task selection by workers of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 45, 301–310 (1999).
Mirenda, J. T. & Vinson, S. B. Division of labour and specification of castes in the red imported fire ant Solenopsis invicta Buren. Anim. Behav. 29, 410–420 (1981).
Wilson, E. O. Division of labor in fire ants based on physical castes (Hymenoptera: Formicidae: Solenopsis). J. Kansas Entomol. Soc. 51, 615–636 (1978).
Sorensen, A., Busch, T. M. & Vinson, S. B. Behavioral flexibility of temporal subcastes in the fire ant, Solenopsis invicta in response to food. Psyche 91, 319–331 (1984).
Bigley, W. S. & Vinson, S. B. Characterization of a brood pheromone isolated from the sexual brood of the imported fire ant, Solenopsis invicta. Ann. Entomol. Soc. Am. 2, 301–304 (1975).
Bajracharya, P., Lu, H. L. & Pietrantonio, P. V. The red imported fire ant (Solenopsis invicta Buren) kept Y not F: Predicted sNPY endogenous ligands deorphanize the short NPF (sNPF) receptor. PLoS ONE 9(10), e109590 (2014).
Google Scholar
Castillo, P. Short neuropeptide F receptor in the worker brain of the red imported fire ant (Solenopsis invicta Buren) and methodology for RNA interference M.S. thesis, Texas A&M University (2015).
Castillo, P. & Pietrantonio, P. V. Differences in sNPF receptor-expressing neurons in brains of fire ant (Solenopsis invicta Buren) worker subcastes: Indicators for division of labor and nutritional status? PLoS ONE 8, e83966 (2013).
Google Scholar
Cassill, D. L. & Tschinkel, W. R. Allocation of liquid food to larvae via trophallaxis in colonies of the fire ant, Solenopsis invicta. Anim. Behav. 3, 801–813 (1995).
Cassill, D. L., Stuy, A. & Buck, R. G. Emergent properties of food distribution among fire ant larvae. J. Theor. Biol. 3, 371–381 (1998).
Google Scholar
Dussutour, A. & Simpson, S. J. Communal nutrition in ants. Curr. Biol. 19, 740–744. https://doi.org/10.1016/j.cub.2009.03.015 (2009).
Google Scholar
Petralia, R. S. & Vinson, S. B. Feeding in the larvae of the imported fire ant, Solenopsis invicta: Behavior and morphological adaptations. Ann. Entomol. Soc. Am. 71, 643–648 (1978).
Petralia, R. S. & Vinson, S. B. Developmental morphology of larvae and eggs of the imported fire ant, Solenopsis invicta. Ann. Entomol. Soc. Am. 72, 472–484 (1979).
Chen, J. Advancement on techniques for the separation and maintenance of the red imported fire ant colonies. Insect Sci. 14, 1–4 (2007).
Banks, W. A. et al. (Agricultural Research (Southern Region), Science and Education…, 1981).
Valles, S. M. & Porter, S. D. Identification of polygyne and monogyne fire ant colonies (Solenopsis invicta) by multiplex PCR of Gp-9 alleles. Insectes Soc. 2, 199–200 (2003).
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101 (2008).
Google Scholar
Cheng, D., Zhang, Z., He, X. & Liang, G. Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS ONE 8, e57718. https://doi.org/10.1371/journal.pone.0057718 (2013).
Google Scholar
Qiu, H.-L., Zhao, C.-Y. & He, Y.-R. On the molecular basis of division of labor in Solenopsis invicta (Hymenoptera: Formicidae) workers: RNA-seq analysis. J. Insect Sci. 17, 48 (2017).
Chen, J. et al. Role of the foraging gene in worker behavioral transition in the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Pest Manag. Sci. https://doi.org/10.1002/ps.6921 (2022).
Google Scholar
Shorter, J. R. & Tibbetts, E. A. The effect of juvenile hormone on temporal polyethism in the paper wasp Polistes dominulus. Insectes Soc. 56, 7–13 (2009).
Pankiw, T., Page, R. E. Jr. & Kim Fondrk, M. Brood pheromone stimulates pollen foraging in honey bees (Apis mellifera). Behav. Ecol. Sociobiol. 44, 193–198. https://doi.org/10.1007/s002650050531 (1998).
Google Scholar
Smedal, B., Brynem, M., Kreibich, C. D. & Amdam, G. V. Brood pheromone suppresses physiology of extreme longevity in honeybees (Apis mellifera). J. Exp. Biol. 212, 3795–3801. https://doi.org/10.1242/jeb.035063 (2009).
Google Scholar
Solis, C. R. & Strassmann, J. E. Presence of brood affects caste differentiation in the social wasp, Polistes exclamans Viereck (Hymenoptera, Vespidae). Funct. Ecol. 4, 531–541. https://doi.org/10.2307/2389321 (1990).
Google Scholar
Traynor, K. S. Decoding Brood Pheromone: The Releaser and Primer Effects of Young and Old Larvae on Honey Bee (Apis mellifera) Workers (Arizona State University, 2014).
Wagoner, K. M., Spivak, M. & Rueppell, O. Brood affects hygienic behavior in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 111, 2520–2530. https://doi.org/10.1093/jee/toy266 (2018).
Google Scholar
Nijhout, H. F. & Wheeler, D. E. Juvenile hormone and the physiological basis of insect polymorphisms. Q. Rev. Biol. 57, 109–133 (1982).
Google Scholar
Source: Ecology - nature.com