in

Genomic architecture of migration timing in a long-distance migratory songbird

  • Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing arctic. Science 370, 712–715 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8, 224–228 (2018).

    ADS 

    Google Scholar 

  • Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Sci. B. 278, 3437–3443 (2011).

    Google Scholar 

  • González, A. M., Bayly, N. J. & Hobson, K. A. Earlier and slower or later and faster: spring migration pace linked to departure time in a Neotropical migrant songbird. J. Anim. Ecol. 89, 2840–2851 (2020).

    Google Scholar 

  • Liedvogel, M., Åkesson, S. & Bensch, S. The genetics of migration on the move. Trends Ecol. Evol. 26, 561–569 (2011).

    Google Scholar 

  • Caprioli, M. et al. Clock gene variation is associated with breeding phenology and maybe under directional selection in the migratory barn swallow. PLoS ONE 7, e35140 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Mettler, R., Segelbacher, G. & Schaefer, M. H. Interactions between a candidate gene for migration (ADCYAP1), morphology and sex predict spring arrival in blackcap populations. PLoS ONE 10, e0144587 (2015).

    Google Scholar 

  • Bazzi, G. et al. Clock gene polymorphism and scheduling of migration: a geolocator study of the barn swallow Hirundo rustica. Sci. Rep. 5, 12443 (2015).

    ADS 

    Google Scholar 

  • Saino, N. et al. Polymorphism at the Clock gene predicts phenology of long-distance migratoin in birds. Mol. Ecol. 24, 1758–1773 (2015).

    CAS 

    Google Scholar 

  • Bossu, C. M. et al. Clock-linked genes underlie seasonal migratory timing in a diurnal raptor. Proc. R. Soc. B. 289, 20212507 (2022).

    CAS 

    Google Scholar 

  • O’Malley, K. G., Ford, M. J. & Hard, J. J. Clock polymorphism in Pacific salmon: evidence for variable selection along a latitudinal gradient. Proc. R. Soc. B. 277, 3703–3714 (2010).

    Google Scholar 

  • Peterson, M. P. et al. Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Research 2 (2013).

  • McKinnon, E. A. & Ten Love, O. P. years tracking the migrations of small landbirds: Lessons learned in the golden age of bio-logging. Auk 135, 834–856 (2018).

    Google Scholar 

  • Fraser, K. C. et al. Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore. Proc. R. Soc. B. 279, 4901–4906 (2012).

    Google Scholar 

  • Neufeld, L. R. et al. Breeding latitude is associated with the timing of nesting and migration around the annual calendar among purple martin Progne subis populations. J. Ornithol. 162, 1009–1024 (2021).

    Google Scholar 

  • Peona, V. et al. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Mol. Ecol. 21(1), 263–286 (2020).

    Google Scholar 

  • Coelho, L. A., Musher, L. J. & Cracraft, J. A multireference-based whole genome assembly for the obligate ant-following antbird, Rhegmatorhina melanosticta (Thamnophilidae). Diversity 11(19), 144 (2019).

    CAS 

    Google Scholar 

  • Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).

    CAS 

    Google Scholar 

  • Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: Towards a genomic predictor of bleaching. Science 369(6501) (2019).

  • Jones, S., Pfister-Genskow, M., Benca, R. M. & Cirelli, C. Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J. Neurochem. 105, 46–62 (2008).

    CAS 

    Google Scholar 

  • Ma, C. et al. Sleep regulation by neurotensinergic neurons in a thalamo-amygdala circuit. Neuron 103 (2019).

  • Wong, J. M. & Eirin-Lopez, J. M. Evolution of methyltransferase-like (METTL) proteins in metazoan: a complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol. Biol. Evol. 38, 5309–5327 (2021).

    CAS 

    Google Scholar 

  • Jia, Z. et al. ACSS3 in brown fast drives propionate catabolism and its deficiency leads to autophagy and systemic metabolic dysfunction. Clin. Transl. Med. 12, e665 (2022).

    CAS 

    Google Scholar 

  • Muller, F. et al. Towards a conceptual framework for explaining variation in nocturnal departure time of songbird migrants. Mov. Ecol. 4, 24 (2016).

    Google Scholar 

  • Fraser, K. C. et al. Individual variability in migration timing can explain long-term population-level advances in a songbird. Front. Ecol. Evol. 7, 324 (2019).

    ADS 

    Google Scholar 

  • Barret, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23(1), 38–44 (2008).

    Google Scholar 

  • Colodro-Conde, L. et al. A direct test of the diathesis-stress model for depression. Mol. Psychiatry 23, 1590–1596 (2017).

    Google Scholar 

  • Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLOS Genetics 9(4) (2013).

  • Lavallée, C. D. et al. The use of nocturnal flights for barrier crossing in a diurnally migrating songbird. Mov. Ecol. 9, 21 (2021).

    Google Scholar 

  • Saino, N. et al. Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow. Sci. Rep. 7, 45412 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Henry, R. A. et al. Changing the selectivity of p300 by acetyl-CoA modulation of histone acetylation. ACS Chem. Biol 10, 146–156 (2015).

    CAS 

    Google Scholar 

  • Sun, H., Skorgerbø, G., Wang, Z., Liu, W. & Li, Y. Structural relationships between highly conserved elements and genes in vertebrate genomes. PLoS ONE 3, e3727 (2008).

    ADS 

    Google Scholar 

  • Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

    CAS 

    Google Scholar 

  • Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    CAS 

    Google Scholar 

  • Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS 

    Google Scholar 

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    ADS 

    Google Scholar 

  • Coombe, L. et al. ARKS: Chromosome-scale scaffolding of human genome drafts with linked read kmers. BMC Bioinform. 19, 1–10 (2018).

    Google Scholar 

  • Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and curation using MAKER and MAKER‐P. Curr. Protocols Bioinform. 48, 4.11.1–4.11.39 (2014).

  • Malmberg, M. M. et al. Evaluation and recommendations for routine genotyping using skim whole genome re-sequencing in canola. Front. Plant. Sci. 9 (2018).

  • Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).

    CAS 

    Google Scholar 

  • Golicz, A. A., Bayer, P. E. & Edwards, D. Skim-based genotyping by sequencing. Methods Mol. Biol. 1245, 257–270 (2015).

    CAS 

    Google Scholar 

  • Hill, R. D. Theory of geolocation by light levels. In B. J. L. Boeuf, & R. M. Laws (Ed.), Elephant seals: Population ecology, behaviour and physiology, pp. 227–236. Berkeley, CA: University of California Press (1994).

  • Wotherspoon, S., Summer, M. & Lisovski, S. BAStag: basic data processing for light based geolocation archival tags. Version 0.1.3. (2016).

  • Lisovski, S. & Hahn, S. GeoLight-processing and anslysing light-based geolocator data in R. Methods Ecol. Evol. 3, 1055–1059 (2012).

    Google Scholar 

  • Gompert, Z., Lucas, L. K., Nice, C. C. & Buerkle, C. A. Genome divergence and the genetic architecture of barriers to gene flow between Lycaeides idas and L. melissa. Evolution 67, 2498–2514 (2013).

    Google Scholar 

  • Pfeifer, S. P. et al. The evolutionary history of Nebraska deer mice: local adaptation in the face of strong gene flow. Mol. Biol. Evol. 35, 792–806 (2018).

    CAS 

    Google Scholar 

  • Purcell, S. et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 

    Google Scholar 

  • Choi, S. W., Mak, T. S. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analysis. Nat Protoc 15, 2759–2772 (2020).

    CAS 

    Google Scholar 

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 

    Google Scholar 

  • Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).

    Google Scholar 

  • Vijay, N. et al. Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex. Nat. Commun. 7, 13195 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Delmore, K. et al. The evolutionary history and genomics of European blackcap migration. eLife 9, e54462 (2020).


  • Source: Ecology - nature.com

    Intra-individual variation of hen movements is associated with later keel bone fractures in a quasi-commercial aviary

    A latitudinal gradient of deep-sea invasions for marine fishes