Jerez-Cepa, I., Gorissen, M., Mancera, J. M. & Ruiz-Jarabo, I. What can we learn from glucocorticoid administration in fish? Effects of cortisol and dexamethasone on intermediary metabolism of gilthead seabream (Sparus aurata L.). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 231, 1–10 (2019).
Google Scholar
Brown, C. L., Urbinati, E. C., Zhang, W., Brown, S. B. & McComb-Kobza, M. Maternal thyroid and glucocorticoid hormone interactions in larval fish development, and their applications in aquaculture. Rev. fish. Sci. Aquac. 22, 207–220 (2014).
Google Scholar
Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366–1375 (2011).
Google Scholar
Schreck, C. B. & Tort, L. In Fish Physiology (eds Schreck, C. B. et al.) vol. 35, 1–34 (Elsevier, 2016).
Sternberg, E. M., Chrousos, G. P., Wilder, R. L. & Gold, P. W. The stress response and the regulation of inflammatory disease. Ann. Intern. Med. 117, 854–866 (1992).
Google Scholar
Staufenbiel, S. M., Penninx, B. W. J. H., Spijker, A. T., Elzinga, B. M. & van Rossum, E. F. C. Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology 38, 1220–1235 (2013).
Google Scholar
Pickering, A. D. & Pottinger, T. G. Cortisol can increase the susceptibility of brown trout, Salmo trutta L., to disease without reducing the white blood cell count. J. Fish Biol. 27, 611–619 (1985).
Google Scholar
McCormick, S. D. et al. Repeated acute stress reduces growth rate of Atlantic salmon parr and alters plasma levels of growth hormone, insulin-like growth factor I and cortisol. Aquaculture 168, 221–235 (1998).
Google Scholar
McConnachie, S. H. et al. Consequences of acute stress and cortisol manipulation on the physiology, behavior, and reproductive outcome of female Pacific salmon on spawning grounds. Horm. Behav. 62, 67–76 (2012).
Google Scholar
Moffat, S. D., An, Y., Resnick, S. M., Diamond, M. P. & Ferrucci, L. Longitudinal change in cortisol levels across the adult life span. J. Gerontol. A Biol. Sci. Med. Sci. 75, 394–400 (2020).
Google Scholar
Oh, H.-J. et al. Age-related decrease in stress responsiveness and proactive coping in male mice. Front. Aging Neurosci. 10, 128 (2018).
Google Scholar
Woods, H. A. 2nd. & Hellgren, E. C. Seasonal changes in the physiology of male Virginia opossums (Didelphis virginiana): Signs of the Dasyurid semelparity syndrome?. Physiol. Biochem. Zool. 76, 406–417 (2003).
Google Scholar
Barry, T. P., Unwin, M. J., Malison, J. A. & Quinn, T. P. Free and total cortisol levels in semelparous and iteroparous Chinook salmon. J. Fish Biol. 59, 1673–1676 (2001).
Google Scholar
Petrosus, E., Silva, E. B., Lay, D. Jr. & Eicher, S. D. Effects of orally administered cortisol and norepinephrine on weanling piglet gut microbial populations and Salmonella passage. J. Anim. Sci. 96, 4543–4551 (2018).
Google Scholar
Shi, D. et al. Impact of gut microbiota structure in heat-stressed broilers. Poult. Sci. 98, 2405–2413 (2019).
Google Scholar
Uren Webster, T. M., Rodriguez-Barreto, D., Consuegra, S. & Garcia de Leaniz, C. Cortisol-related signatures of stress in the fish microbiome. Front. Microbiol. 11, 1621 (2020).
Google Scholar
Ridlon, J. M. et al. Clostridium scindens: A human gut microbe with a high potential to convert glucocorticoids into androgens. J. Lipid Res. 54, 2437–2449 (2013).
Google Scholar
UrenWebster, T. M., Consuegra, S. & Garcia de Leaniz, C. Early life stress causes persistent impacts on the microbiome of Atlantic salmon. Comp. Biochem. Physiol. Part D Genomics Proteomics 40, 100888 (2021).
Google Scholar
Bozzi, D. et al. Salmon gut microbiota correlates with disease infection status: Potential for monitoring health in farmed animals. Anim. Microbiome 3, 30 (2021).
Google Scholar
Xiong, J.-B., Nie, L. & Chen, J. Current understanding on the roles of gut microbiota in fish disease and immunity. Zool. Res. 40, 70–76 (2019).
Williams, C. L., Garcia-Reyero, N., Martyniuk, C. J., Tubbs, C. W. & Bisesi, J. H. Jr. Regulation of endocrine systems by the microbiome: Perspectives from comparative animal models. Gen. Comp. Endocrinol. 292, 113437 (2020).
Google Scholar
Schmidt, K. et al. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 232, 1793–1801 (2015).
Google Scholar
Crumeyrolle-Arias, M. et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42, 207–217 (2014).
Google Scholar
Bell, E. A., Ball, A. G., Deprey, K. L. & Uno, J. K. The impact of antibiotics on the intestinal microbiome and the gut-brain axis in zebrafish. FASEB J. 32, 765–771 (2018).
Google Scholar
Björnsson, B. T., Stefansson, S. O. & McCormick, S. D. Environmental endocrinology of salmon smoltification. Gen. Comp. Endocrinol. 170, 290–298 (2011).
Google Scholar
Carruth, L. L., Jones, R. E. & Norris, D. O. Cortisol and Pacific Salmon: A new look at the role of stress hormones in olfaction and home-stream migration. Integr. Comp. Biol. 42, 574–581 (2002).
Google Scholar
Donaldson, E. M. & Fagerlund, U. H. M. Effect of sexual maturation and gonadectomy at sexual maturity on cortisol secretion rate in sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Board Can. 27, 2287–2296 (1970).
Google Scholar
Dickhoff, W. W. Development, Maturation, and Senescence of Neuroendocrine Systems 253–266 (Elsevier, 1989).
Google Scholar
Maule, A. G., Schreck, C. B. & Kaattari, S. L. Changes in the immune system of coho salmon (Oncorhynchus kisutch) during the parr-to-smolt transformation and after implantation of cortisol. Can. J. Fish. Aquat. Sci. 44, 161–166 (1987).
Google Scholar
Llewellyn, M. S. et al. Parasitism perturbs the mucosal microbiome of Atlantic Salmon. Sci. Rep. 7, 1–10 (2017).
Google Scholar
Vasemägi, A., Visse, M. & Kisand, V. Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild Salmonid fish. mSphere 2, e00418-17 (2017).
Google Scholar
Kelly, C. & Salinas, I. Under pressure: Interactions between commensal microbiota and the teleost immune system. Front. Immunol. 8, 559 (2017).
Google Scholar
Fast, M. D., Hosoya, S., Johnson, S. C. & Afonso, L. O. B. Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish Shellfish Immunol. 24, 194–204 (2008).
Google Scholar
Carrizo, V. et al. Effect of cortisol on the immune-like response of rainbow trout (Oncorhynchus mykiss) myotubes challenged with Piscirickettsia salmonis. Vet. Immunol. Immunopathol. 237, 110240 (2021).
Google Scholar
Nervino, S. Intestinal lesions and parasites associated with prespawn mortality in Chinook salmon (Oncorhynchus tshawytscha). (2022).
Couch, C. E. et al. Enterocytozoon schreckii n. sp. infects the enterocytes of adult chinook salmon (Oncorhynchus tshawytscha) and may be a sentinel of immunosenescence. mSphere 7, e0090821 (2022).
Google Scholar
Redding, J. M., Schreck, C. B., Birks, E. K. & Ewing, R. D. Cortisol and its effects on plasma thyroid hormone and electrolyte concentrations in fresh water and during seawater acclimation in yearling coho salmon, Oncorhynchus kisutch. Gen. Comp. Endocrinol. 56, 146–155 (1984).
Google Scholar
Marotz, C. et al. DNA extraction for streamlined metagenomics of diverse environmental samples. Biotechniques 62, 290–293 (2017).
Google Scholar
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 108(Suppl 1), 4516–4522 (2011).
Google Scholar
Minich, J. J. et al. High-throughput miniaturized 16S rRNA amplicon library preparation reduces costs while preserving microbiome integrity. mSystems 3, e00166-18 (2018).
Google Scholar
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).
Google Scholar
Escalas, A. et al. Ecological specialization within a carnivorous fish family is supported by a herbivorous microbiome shaped by a combination of gut traits and specific diet. Front. Mar. Sci. 8, 622883 (2021).
Google Scholar
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
Google Scholar
Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (2020). https://www.R-project.org/.
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Google Scholar
Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. R. J. 8, 352 (2016).
Google Scholar
Schliep, K., Potts, A. J., Morrison, D. A. & Grimm, G. W. Intertwining phylogenetic trees and networks. Methods Ecol. Evol. 8, 1212–1220 (2017).
Google Scholar
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948).
Google Scholar
Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. II. Psychometrika 27, 219–246 (1962).
Google Scholar
Oksanen, J. et al. The vegan package. Community Ecol. Packag. 10, 631–637 (2007).
Martinez Arbizu, P. pairwiseAdonis: Pairwise Multilevel Comparison using Adonis. Preprint at (2017)
Zhang, Y. Likelihood-based and Bayesian methods for Tweedie compound Poisson linear mixed models. Stat. Comput. 23, 743–757 (2013).
Google Scholar
Hassenrück, C., Reinwald, H., Kunzmann, A., Tiedemann, I. & Gärdes, A. Effects of thermal stress on the gut microbiome of juvenile milkfish (Chanos chanos). Microorganisms 9, 5 (2020).
Google Scholar
Liu, Y. et al. Response mechanism of gut microbiome and metabolism of European seabass (Dicentrarchus labrax) to temperature stress. Sci. Total Environ. 813, 151786 (2022).
Google Scholar
Du, F. et al. Response of the gut microbiome of Megalobrama amblycephala to crowding stress. Aquaculture 500, 586–596 (2019).
Google Scholar
Stothart, M. R., Palme, R. & Newman, A. E. M. It’s what’s on the inside that counts: Stress physiology and the bacterial microbiome of a wild urban mammal. Proc. Biol. Sci. 286, 20192111 (2019).
Google Scholar
Michels, N. et al. Gut microbiome patterns depending on children’s psychosocial stress: Reports versus biomarkers. Brain Behav. Immun. 80, 751–762 (2019).
Google Scholar
Zhao, H., Jiang, X. & Chu, W. Shifts in the gut microbiota of mice in response to dexamethasone administration. Int. Microbiol. 23, 565–573 (2020).
Google Scholar
Zanuzzo, F. S., Sabioni, R. E., Marzocchi-Machado, C. M. & Urbinati, E. C. Modulation of stress and innate immune response by corticosteroids in pacu (Piaractus mesopotamicus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 231, 39–48 (2019).
Google Scholar
Timmermans, S., Souffriau, J. & Libert, C. A general introduction to glucocorticoid biology. Front. Immunol. 10, 1545 (2019).
Google Scholar
Kugathas, S. & Sumpter, J. P. Synthetic glucocorticoids in the environment: First results on their potential impacts on fish. Environ. Sci. Technol. 45, 2377–2383 (2011).
Google Scholar
Schaal, P. et al. Links between host genetics, metabolism, gut microbiome and amoebic gill disease (AGD) in Atlantic salmon. Anim. Microbiome 4, 53 (2022).
Google Scholar
Birlanga, V. B. et al. Dynamic gill and mucus microbiomes during a gill disease episode in farmed Atlantic salmon. Sci. Rep. 12, 16719 (2022).
Google Scholar
Cipriano, R. C., Ford, L. A., Smith, D. R., Schachte, J. H. & Petrie, C. J. Differences in detection of Aeromonas salmonicida in covertly infected Salmonid fishes by the stress-inducible furunculosis test and culture-based assays. J. Aquat. Anim. Health 9, 108–113 (1997).
Google Scholar
Lovy, J., Speare, D. J., Stryhn, H. & Wright, G. M. Effects of dexamethasone on host innate and adaptive immune responses and parasite development in rainbow trout Oncorhynchus mykiss infected with Loma salmonae. Fish Shellfish Immunol. 24, 649–658 (2008).
Google Scholar
Bakhtiyar, Y., Yousuf, T. & Arafat, M. Y. Bacterial Fish Diseases 269–278 (Elsevier, 2022).
Google Scholar
Benda, S. E., Naughton, G. P., Caudill, C. C., Kent, M. L. & Schreck, C. B. Cool, pathogen-free refuge lowers pathogen-associated prespawn mortality of Willamette River Chinook salmon. Trans. Am. Fish. Soc. 144, 1159–1172 (2015).
Google Scholar
Barton, B. A. & Iwama, G. K. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1, 3–26 (1991).
Google Scholar
Dolan, B. P. et al. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha. Fish Shellfish Immunol. 48, 136–144 (2016).
Google Scholar
Wedemeyer, G. A. Physiological response of juvenile coho salmon (Oncorhynchus kisutch) and rainbow trout (Salmo gairdneri) to handling and crowding stress in intensive fish culture. J. Fish. Res. Board Can. 33, 2699–2702 (1976).
Google Scholar
Suomalainen, L.-R., Tiirola, M. A. & Valtonen, E. T. Influence of rearing conditions on Flavobacterium columnare infection of rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 28, 271–277 (2005).
Google Scholar
Schmidt-Posthaus, H., Bernet, D., Wahli, T. & Burkhardt-Holm, P. Morphological organ alterations and infectious diseases in brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss exposed to polluted river water. Dis. Aquat. Organ. 44, 161–170 (2001).
Google Scholar
Shi, N., Li, N., Duan, X. & Niu, H. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res. 4, 1–7 (2017).
Google Scholar
Mitchell, S. O. et al. “Candidatus Branchiomonas cysticola” is a common agent of epitheliocysts in seawater-farmed Atlantic salmon Salmo salar in Norway and Ireland. Dis. Aquat. Organ. 103, 35–43 (2013).
Google Scholar
Kormas, K. A., Meziti, A., Mente, E. & Frentzos, A. Dietary differences are reflected on the gut prokaryotic community structure of wild and commercially reared sea bream (Sparus aurata). Microbiologyopen 3, 718–728 (2014).
Google Scholar
Engel, M. et al. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome. PLoS ONE 12, e0180859 (2017).
Google Scholar
Lucasson, A. et al. A core of functionally complementary bacteria colonizes oysters in Pacific Oyster Mortality Syndrome. bioRxiv https://doi.org/10.1101/2020.11.16.384644 (2020).
Google Scholar
Source: Ecology - nature.com