in

Pan-Arctic marine biodiversity and species co-occurrence patterns under recent climate

  • Randelhoff, A. et al. Pan-Arctic ocean primary production constrained by turbulent nitrate fluxes. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00150 (2020).

    Article 

    Google Scholar 

  • Wegner, C. et al. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene. Polar Res. https://doi.org/10.3402/polar.v%v.24964 (2015).

    Article 

    Google Scholar 

  • Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70. https://doi.org/10.1016/j.pocean.2015.05.002 (2015).

    Article 
    ADS 

    Google Scholar 

  • Lewis, K. M., van Dijken, G. L. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 369, 198–202. https://doi.org/10.1126/science.aay8380 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mueter, F. J. et al. Possible future scenarios in the gateways to the Arctic for Subarctic and Arctic marine systems: II. Prey resources, food webs, fish, and fisheries. ICES J. Mar. Sci. 78, 3017–3045. https://doi.org/10.1093/icesjms/fsab122 (2021).

    Article 

    Google Scholar 

  • Alabia, I. D. et al. Multiple facets of marine biodiversity in the Pacific Arctic under future climate. Sci. Total Environ. 744, 140913. https://doi.org/10.1016/j.scitotenv.2020.140913 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • CAFF. Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. (Conservation of Arctic Flora and Fauna, Akureyri, Iceland, 2013).

  • Stafford, K. M., Farley, E. V., Ferguson, M., Kuletz, K. J. & Levine, R. Northward range expansion of subarctic upper trophic level animals into the Pacific Arctic Region. Oceanography. 35, 158–166. https://doi.org/10.5670/oceanog.2022.101 (2022).

  • Csapó, H. K., Grabowski, M. & Węsławski, J. M. Coming home—Boreal ecosystem claims Atlantic sector of the Arctic. Sci. Total Environ. 771, 144817. https://doi.org/10.1016/j.scitotenv.2020.144817 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. 114, 12202–12207. https://doi.org/10.1073/pnas.1706080114 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gordó-Vilaseca, C., Stephenson, F., Coll, M., Lavin, C. & Costello, M. J. Three decades of increasing fish biodiversity across the northeast Atlantic and the Arctic Ocean. Proc. Natl. Acad. Sci. 120, e2120869120. https://doi.org/10.1073/pnas.2120869120 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kalenitchenko, D., Joli, N., Potvin, M., Tremblay, J. -É. & Lovejoy, C. Biodiversity and species change in the arctic ocean: A view through the lens of nares strait. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00479 (2019).

    Article 

    Google Scholar 

  • Michel, C. et al. Arctic Ocean outflow shelves in the changing Arctic: A review and perspectives. Prog. Oceanogr. 139, 66–88. https://doi.org/10.1016/j.pocean.2015.08.007 (2015).

    Article 
    ADS 

    Google Scholar 

  • Ribeiro, S. et al. Vulnerability of the North Water ecosystem to climate change. Nat. Commun. 12, 4475. https://doi.org/10.1038/s41467-021-24742-0 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: Why ecological interaction networks vary through space and time. Oikos 124, 243–251. https://doi.org/10.1111/oik.01719 (2015).

    Article 

    Google Scholar 

  • Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evolut. 4, 376–383. https://doi.org/10.1038/s41559-020-1099-4 (2020).

    Article 

    Google Scholar 

  • Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063. https://doi.org/10.1111/ele.13525 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Michael, E. L. Marine ecology and the coefficient of association: A plea in behalf of quantitative biology. J. Ecol. 8, 54–59. https://doi.org/10.2307/2255213 (1920).

    Article 

    Google Scholar 

  • Gotelli, N. J., Graves, G. R. & Rahbek, C. Macroecological signals of species interactions in the Danish avifauna. Proc. Natl. Acad. Sci. 107, 5030–5035. https://doi.org/10.1073/pnas.0914089107 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gotelli, N. J. & McCabe, D. J. Species co-occurrence: A meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83, 2091–2096. https://doi.org/10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2 (2002).

    Article 

    Google Scholar 

  • Ulrich, W. Species co-occurrences and neutral models: Reassessing J. M. Diamond’s Assembly Rules. Oikos 107, 603–609 (2004).

    Article 

    Google Scholar 

  • Kraan, C., Thrush, S. F. & Dormann, C. F. Co-occurrence patterns and the large-scale spatial structure of benthic communities in seagrass meadows and bare sand. BMC Ecol. 20, 37. https://doi.org/10.1186/s12898-020-00308-4 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tulloch, A. I. T., Chadès, I. & Lindenmayer, D. B. Species co-occurrence analysis predicts management outcomes for multiple threats. Nat. Ecol. Evolut. 2, 465–474. https://doi.org/10.1038/s41559-017-0457-3 (2018).

    Article 

    Google Scholar 

  • Drinkwater, K. F. et al. Possible future scenarios for two major Arctic Gateways connecting Subarctic and Arctic marine systems: I. Climate and physical–chemical oceanography. ICES J. Mar. Sci. 78, 3046–3065. https://doi.org/10.1093/icesjms/fsab182 (2021).

    Article 

    Google Scholar 

  • Pilfold, N. W., McCall, A., Derocher, A. E., Lunn, N. J. & Richardson, E. Migratory response of polar bears to sea ice loss: To swim or not to swim. Ecography 40, 189–199. https://doi.org/10.1111/ecog.02109 (2017).

    Article 

    Google Scholar 

  • Chambault, P. et al. The impact of rising sea temperatures on an Arctic top predator, the narwhal. Sci. Rep. 10, 18678. https://doi.org/10.1038/s41598-020-75658-6 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perovich, D. et al. Arctic Report Card 2020: Sea Ice. https://doi.org/10.25923/n170-9h57 (2020).

  • Post, E. et al. Ecological dynamics across the arctic associated with recent climate change. Science 325, 1355–1358. https://doi.org/10.1126/science.1173113 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524. https://doi.org/10.1126/science.1235225 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bienhold, C. et al. Effects of sea ice retreat and ocean warming on the Laptev Sea continental slope ecosystem (1993 vs 2012). Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.1004959 (2022).

    Article 

    Google Scholar 

  • Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep Sea Res. Part II 159, 152–168. https://doi.org/10.1016/j.dsr2.2018.05.023 (2019).

    Article 

    Google Scholar 

  • MacKenzie, B. R., Payne, M. R., Boje, J., Høyer, J. L. & Siegstad, H. A cascade of warming impacts brings bluefin tuna to Greenland waters. Glob. Change Biol. 20, 2484–2491. https://doi.org/10.1111/gcb.12597 (2014).

    Article 
    ADS 

    Google Scholar 

  • Alabia, I. D. et al. Distribution shifts of marine taxa in the Pacific Arctic under contemporary climate changes. Divers. Distrib. 24, 1583–1597. https://doi.org/10.1111/ddi.12788 (2018).

    Article 

    Google Scholar 

  • Stewart, D. B. & Barber, D. G. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 1–38 (Springer Netherlands, 2010).

  • Ferland, J., Gosselin, M. & Starr, M. Environmental control of summer primary production in the Hudson Bay system: The role of stratification. J. Mar. Syst. 88, 385–400. https://doi.org/10.1016/j.jmarsys.2011.03.015 (2011).

    Article 

    Google Scholar 

  • Peacock, E., Derocher, A. E., Lunn, N. J. & Obbard, M. E. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 93–116 (Springer Netherlands, 2010).

  • Chambellant, M. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 137–158 (Springer Netherlands, 2010).

  • Mallory, M. L., Gaston, A. J., Gilchrist, H. G., Robertson, G. J. & Braune, B. M. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 179–195 (Springer Netherlands, 2010).

  • Lone, K., Hamilton, C. D., Aars, J., Lydersen, C. & Kovacs, K. M. Summer habitat selection by ringed seals (Pusa hispida) in the drifting sea ice of the northern Barents Sea. Polar Res. https://doi.org/10.33265/polar.v38.3483 (2019).

    Article 

    Google Scholar 

  • Jackson, R. et al. Holocene polynya dynamics and their interaction with oceanic heat transport in northernmost Baffin Bay. Sci. Rep. 11, 10095. https://doi.org/10.1038/s41598-021-88517-9 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stafford, K. M. et al. Beluga whales in the western Beaufort Sea: Current state of knowledge on timing, distribution, habitat use and environmental drivers. Deep Sea Res. Part II 152, 182–194. https://doi.org/10.1016/j.dsr2.2016.11.017 (2018).

    Article 

    Google Scholar 

  • Kuletz, K. J. et al. Seasonal spatial patterns in seabird and marine mammal distribution in the eastern Chukchi and western Beaufort seas: Identifying biologically important pelagic areas. Prog. Oceanogr. 136, 175–200. https://doi.org/10.1016/j.pocean.2015.05.012 (2015).

    Article 
    ADS 

    Google Scholar 

  • Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-arctic seas. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00491 (2020).

    Article 

    Google Scholar 

  • Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677. https://doi.org/10.1038/nclimate2647 (2015).

    Article 
    ADS 

    Google Scholar 

  • Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212. https://doi.org/10.1002/2014GL061047 (2014).

    Article 
    ADS 

    Google Scholar 

  • Randelhoff, A. & Sundfjord, A. Short commentary on marine productivity at Arctic shelf breaks: Upwelling, advection and vertical mixing. Ocean Sci. 14, 293–300. https://doi.org/10.5194/os-14-293-2018 (2018).

    Article 
    ADS 

    Google Scholar 

  • Bluhm, B. A. et al. The Pan-Arctic continental slope: sharp gradients of physical processes affect pelagic and benthic ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.544386 (2020).

    Article 

    Google Scholar 

  • Daase, M., Berge, J., Søreide, J. E. & Falk-Petersen, S. in Arctic Ecology (ed David N. Thomas) Ch. 9, 219–259 (Wiley, 2021).

  • McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Young, K. A. Asymmetric competition, habitat selection, and niche overlap in Juvenile Salmonids. Ecology 85, 134–149 (2004).

    Article 

    Google Scholar 

  • Aguilera, M. A., Valdivia, N., Broitman, B. R., Jenkins, S. R. & Navarrete, S. A. Novel co-occurrence of functionally redundant consumers induced by range expansion alters community structure. Ecology 101, e03150. https://doi.org/10.1002/ecy.3150 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Usinowicz, J. & Levine, J. M. Species persistence under climate change: A geographical scale coexistence problem. Ecol. Lett. 21, 1589–1603. https://doi.org/10.1111/ele.13108 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Durant, J. M. et al. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Sci. Rep. 9, 15213. https://doi.org/10.1038/s41598-019-51607-w (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • García-Baquero, G. & Crujeiras, R. M. Can environmental constraints determine random patterns of plant species co-occurrence?. Ecol. Evol. 5, 1088–1099. https://doi.org/10.1002/ece3.1349 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bar-Massada, A. Complex relationships between species niches and environmental heterogeneity affect species co-occurrence patterns in modelled and real communities. Proc. R. Soc. B Biol. Sci. 282, 20150927. https://doi.org/10.1098/rspb.2015.0927 (2015).

    Article 

    Google Scholar 

  • Overland, J. E., Wang, M., Walsh, J. E. & Stroeve, J. C. Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future 2, 68–74. https://doi.org/10.1002/2013EF000162 (2014).

    Article 
    ADS 

    Google Scholar 

  • Hirawake, T. et al. Response and biodiversity of Arctic ecosystems to environmental change: Findings from the ArCS project. Polar Sci. https://doi.org/10.1016/j.polar.2020.100533 (2020).

    Article 

    Google Scholar 

  • Solan, M., Archambault, P., Renaud, P. E. & März, C. The changing Arctic Ocean: Consequences for biological communities, biogeochemical processes and ecosystem functioning. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 20200266. https://doi.org/10.1098/rsta.2020.0266 (2020).

    Article 
    ADS 

    Google Scholar 

  • Timmermans, M.-L. & Marshall, J. Understanding Arctic Ocean circulation: A review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans. 125, e2018JC014378. https://doi.org/10.1029/2018JC014378 (2020).

    Article 
    ADS 

    Google Scholar 

  • Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).

    Article 
    ADS 

    Google Scholar 

  • Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M (2009).

  • Lehodey, P., Murtugudde, R. & Senina, I. Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups. Prog. Oceanogr. 84, 69–84. https://doi.org/10.1016/j.pocean.2009.09.008 (2010).

    Article 
    ADS 

    Google Scholar 

  • Green, D. B. et al. Modelled mid-trophic pelagic prey fields improve understanding of marine predator foraging behaviour. Ecography 43, 1014–1026. https://doi.org/10.1111/ecog.04939 (2020).

    Article 

    Google Scholar 

  • Pérez-Jorge, S. et al. Environmental drivers of large-scale movements of baleen whales in the mid-North Atlantic Ocean. Divers. Distrib. 26, 683–698. https://doi.org/10.1111/ddi.13038 (2020).

    Article 

    Google Scholar 

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545. https://doi.org/10.1111/ecog.01132 (2015).

    Article 

    Google Scholar 

  • Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).

    Article 

    Google Scholar 

  • Thuiller, W., Georges D., Gueguen, M., Engler, R., & Breiner, F. biomod2: Ensemble Platform for species Distribution Modeling. R package version 3.5.1. http://CRAN.R-project.org/package=biomod2 (2021). Accessed on 15 January 2022.

  • Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x (2012).

    Article 

    Google Scholar 

  • Griffith, D. M., Veech, J. A. & Marsh, C. J. cooccur: Probabilistic species co-occurrence analysis in R. J. Stat. Softw. Code Snippets 69, 1–17. https://doi.org/10.18637/jss.v069.c02 (2016).

    Article 

    Google Scholar 

  • Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260. https://doi.org/10.1111/j.1466-8238.2012.00789.x (2013).

    Article 

    Google Scholar 

  • Abdi, A. M. et al. First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems. Int. J. Appl. Earth Obs. Geoinf. 78, 249–260. https://doi.org/10.1016/j.jag.2019.01.018 (2019).

    Article 
    ADS 

    Google Scholar 

  • Ban, S. S., Alidina, H. M., Okey, T. A., Gregg, R. M. & Ban, N. C. Identifying potential marine climate change Refugia: A case study in Canada’s Pacific marine ecosystems. Glob. Ecol. Conserv. 8, 41–54. https://doi.org/10.1016/j.gecco.2016.07.004 (2016).

    Article 

    Google Scholar 

  • Alabia, I. D. et al. Marine biodiversity Refugia in a climate-sensitive subarctic shelf. Glob. Change Biol. 27, 3299–3311. https://doi.org/10.1111/gcb.15632 (2021).

    Article 

    Google Scholar 

  • Alabia, I. D., Saitoh, S.-I., Igarashi, H., Ishikawa, Y. & Imamura, Y. Spatial habitat shifts of oceanic cephalopod (Ommastrephes bartramii) in oscillating climate. Remote Sensing. https://doi.org/10.3390/rs12030521 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Engaging enterprises with the climate crisis

    Abiotic selection of microbial genome size in the global ocean