Abstract
Coastal landforms, particularly sea cliffs and associated wave-cut platforms, preserve key evidence of past sea-level fluctuations, tectonic activity, and paleoclimate variability. In this study, we implement a supervised machine learning approach, trained on an original, expert-labeled geomorphological dataset, to detect and classify inherited and active coastal features – such as paleo-sea cliffs and polycyclic sea cliffs – along the south-Tyrrhenian. Using DTM and morphometric indicators, our model, based on a RandomForestClassifier trained on expert-based cartography and independently validated, accurately identifies the spatial signatures of Quaternary coastal evolution. These results are cross validated against independent geomorphological mapping and sea-level reconstruction datasets. The integration of geomorphological classification with sea level markers enables us to reconstruct coastal morphogenesis in relation to the last interglacial cycle. Our findings highlight the potential of machine learning to automate the identification of coastal paleo-landscapes, providing insight into the imprint of climatic forcing on their morphology. This approach offers a scalable framework for investigating past climate–landscape interactions and for supporting future coastal hazard assessments under changing climate conditions.
Similar content being viewed by others
Predicting regional coastal sea level changes with machine learning
A framework for estimating the anthropogenic part of Antarctica’s sea level contribution in a synthetic setting
Integrating machine learning and geomorphic indices to assess tectonic geomorphology in the Karoun River Basin, Zagros, SW Iran
Data availability
The data that support the findings of this study are contained in the manuscript and supplementary materials.
References
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. 111(43) 15296-15303. https://doi.org/10.1073/pnas.1411762111 (2014)
Rovere, A., Stocchi, P. & Vacchi, M. Eustatic and relative sea level changes. Curr. Clim. Change Rep. 2, 221–231. https://doi.org/10.1007/s40641-016-0045-7 (2016).
Vacchi, M. et al. Multiproxy assessment of holocene relative sea-level changes in the western mediterranean: sea-level variability and improvements in the definition of the isostatic signal. Earth-Sci. Rev. 155, 172–197. https://doi.org/10.1016/j.earscirev.2016.02.002 (2016).
Masselink, G., Russell, P., Rennie, A., Brooks, S. & Spencer, T. Impacts of climate change on coastal geomorphology and coastal erosion relevant to the coastal and marine environment around the UK. MCCIP Sci. Rev. 2020, 158–189. https://doi.org/10.14465/2020.arc08.cgm (2020).
Lee, H., Calvin, K., Dasgupta, D., Krinmer, G., Mukherji, A., Thorne, P., & Zommers, Z. Synthesis report of the IPCC Sixth Assessment Report (AR6) Longer report. IPCC (2023).
Tursi, M. F. et al. The response of sandstone sea cliffs to holocene sea-level rise by means of remote sensing and direct surveys: the case study of punta licosa promontory (Southern Italy). Geosciences 13, 120. https://doi.org/10.3390/geosciences13040120 (2023).
Tursi, M. F., Anfuso, G., Manno, G., Mattei, G. & Aucelli, P. P. A multi component approach to predict erosion susceptibility of rocky coasts: Marine, terrestrial and climatic forcing—an application in Southern Italy. Environ. Earth Sci. 84(7), 183. https://doi.org/10.1007/s12665-025-12143-1 (2025).
Mattei, G. et al. Reconstructing anthropic coastal landscape of Campi Flegrei volcanic area (Southern Italy) during the Roman period from multi-technique surveys. J. Maps 19(1), 2187320. https://doi.org/10.1080/17445647.2023.2187320 (2023).
Mattei, G. et al. Historical vertical ground movements in the Campi Flegrei volcano: a new transect across the caldera rim. Geomorphology 446, 108997. https://doi.org/10.1016/j.geomorph.2023.108997 (2024).
Barnes, T. J., Schuler, T. V., Filhol, S. & Lilleøren, K. S. A machine learning approach to the geomorphometric detection of ribbed moraines in Norway. Earth Surf. Dyn. 12(3), 801–818. https://doi.org/10.5194/esurf-12-801-2024 (2024).
Ciaramella, A., Perrotta, F., Pappone, G., Aucelli, P., Peluso, F., & Mattei, G. Environment object detection for marine argo drone by deep learning. In Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, January 10–15, 2021 Proc., Part VI (eds. Campilho, A. & Karray, F.) 121–129 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-68780-9_12 (2021).
Mattei, G. et al. Multi-method technics and deep neural networks tools on board ARGO USV for the geoarchaeological and geomorphological mapping of coastal areas: the case of puteoli roman harbour. Sensors 24(4), 1090. https://doi.org/10.3390/s24041090 (2024).
Sorrentino, A., Maratea, A., Mattei, G., Pappone, G., Tursi, M. F., & Aucelli, P. P. A GIS-based geostatistical approach for palaeo-environmental reconstructions of coastal areas: the case of the Cilento promontory (southern Italy). In 2023 IEEE Int. Workshop metrol. sea; learning to measure sea health parameters (MetroSea) 488–493 (IEEE 2023). https://doi.org/10.1109/MetroSea58055.2023.10317359. (2023)
Sorrentino, A., Mattei, G., Pappone, G., & Aucelli, P. P. C. Paleo-seascape reconstructions along the Cilento coasts (Tyrrhenian Sea) by innovative AI approach (No. EGU25-10719). Copernicus Meet. 10.5194/egusphere-egu25-10719 (2025).
Eng, K., & Wolock, D. M. Evaluation of machine learning approaches for predicting streamflow metrics across the conterminous United States (No. 2022-5058). US Geol. Surv. https://doi.org/10.3133/sir20225058 (2022).
de Burgh-Day, C. O. & Leeuwenburg, T. Machine learning for numerical weather and climate modelling: a review. Geosci. Model Dev. 16(22), 6433–6477. https://doi.org/10.5194/gmd-16-6433-2023 (2023).
Li, Y. E. & O’malley, D., Beroza, G., Curtis, A., & Johnson, P.,. Machine learning developments and applications in solid-Earth geosciences: Fad or future?. Journal of Geophysical Research: Solid Earth 128(1), 6310 (2023).
Miralles, P. et al. A critical review on the state-of-the-art and future prospects of machine learning for earth observation operations. Adv. Space Res. 71(12), 4959–4986. https://doi.org/10.1016/j.asr.2023.02.025 (2023).
Anderson, J. B., Wallace, D. J., Rodriguez, A. B., Simms, A. R., & Milliken, K. T. Holocene evolution of the western Louisiana–Texas Coast USA: Response to sea-level rise and climate change. https://doi.org/10.1130/2022.1221(01) (2022).
Anderson, J. B., Wallace, D. J., Simms, A. R., Rodriguez, A. B. & Milliken, K. T. Variable response of coastal environments of the northwestern Gulf of Mexico to sea-level rise and climate change: implications for future change. Mar. Geol. 352, 348–366. https://doi.org/10.1016/j.margeo.2013.12.008 (2014).
Kuhn, L. A., Zonneveld, K. A., Souza, P. A. & Cancelli, R. R. Late quaternary palaeoenvironmental evolution and sea level oscillation of Santa Catarina Island (southern Brazil). Biogeosciences 20(10), 1843–1861. https://doi.org/10.5194/bg-20-1843-2023 (2023).
Ferranti, L. et al. Markers of the last interglacial sea-level high stand along the coast of Italy: tectonic implications. Quat. Int. 145, 30–54. https://doi.org/10.1016/j.quaint.2005.07.009 (2006).
De Santis, V. et al. Reoccupation of late Quaternary relative sea level indicators in a tectonically quasi-stable coastal area in Southern Italy (Cilento headland): insights into the Last Interglacial stillstands. Geomorphology 478(10969), 109692. https://doi.org/10.1016/j.geomorph.2025.109692 (2025).
Romano, P. La distribuzione dei depositi marini pleistocenici lungo le coste della Campania: Stato delle conoscenze e prospettive di ricerca. Studi Geol. Camerti Nuova Ser. 1(265), 269 (1992).
Monti, L., Sgrosso, I., Graziano, R., Amore, F., Morabito, S., Santini, U., et al. Note illustrative della Carta Geologica d’Italia alla scala 1:50.000. Foglio 520 “Sapri”. Servizio Geologico d’Italia – ISPRA Roma. (2014).
Martelli, L., Nardi, G., Cammarosano, A., Cavuoto, G., Aiello, G., D’Argenio, B., et al. Note illustrative della Carta Geologica d’Italia alla scala 1:50.000. Foglio 502 “Agropoli”. Servizio Geologico d’Italia – ISPRA, Roma. (2016).
Martelli, S., Nardi, G., Cavuoto, G., Conforti, A., Ferraro, L., & D’Argenio, B. Note illustrative della Carta Geologica d’Italia alla scala 1:50.000. Foglio 519 “Capo Palinuro”. Servizio Geologico d’Italia – ISPRA, Roma. (2016).
Valente, E. et al. Defining the geotourism potential of the Cilento, Vallo di Diano and Alburni UNESCO Global Geopark (Southern italy). Geosciences 11(11), 466. https://doi.org/10.3390/geosciences11110466 (2021).
Iannace, A., Romano, P., Santangelo, N., Santo, A. & Tuccimei, P. The OIS 5c along Punta Licosa promontory (Campania region, southern Italy): morphostratigraphy and U/Th dating. Z. Geomorphol. 45(3), 307–320 (2001).
Aiello, G., & Marsella, E. Geological evolution of coastal and marine environments off the Campania continental shelf through marine geological mapping—The example of the Cilento promontory. In Applied Studies of Coastal and Marine Environments 1st ed. Marghany, M., Ed. 13–53 https://doi.org/10.5772/61738 (2016).
Amato, V. et al. Anthropogenic amplification of geomorphic processes along the Mediterranean coasts: a case-study from the Graeco-Roman town of Elea-Velia (Campania, Italy). Geomorphology 383, 107694. https://doi.org/10.1016/j.geomorph.2021.107694 (2021).
Cinque, A., Romano, P., Rosskopf, C., Santangelo, N. & Santo, A. Morfologie costiere e depositi quaternari tra Agropoli e Ogliastro Marina (Cilento-Italia meridionale). Alp. Mediterr. Quat. 7(1a), 3–16 (1994). 2-s2.0-0002744845 (Scopus)
Moran, P. A. Notes on continuous stochastic phenomena. Biometrika 37(1/2), 17–23. https://doi.org/10.2307/2332142 (1950).
Isola, I. et al. Last interglacial and MIS 9e relative sea-level highstands in the Central Mediterranean: a reappraisal from coastal cave deposits in the Cilento area Southern Italy. Quat. Sci. Adv. 15, 100212. https://doi.org/10.1016/j.qsa.2024.100212 (2024).
Hooke, R. L. Predictive modelling in geomorphology: an oxymoron?. Geophys. Monogr. Am. Geophys. Union 135, 51–62. https://doi.org/10.1029/135GM05 (2003).
Tarquini, S., Isola, I., Favalli, M., Mazzarini, F., Bisson, M., Pareschi, M. T., & Boschi, E. TINITALY/01: a new triangular irregular network of Italy. Ann. Geophys. 50(3) 407-425 Online resources available at: https://tinitaly.pi.ingv.it/ (2007)
Evans JS, Oakleaf J, Cushman SA. An ArcMAP toolbox for surface gradient and geomorphometric modeling software available at URL: https://github.com/jeffreyevans/GradientMetrics Accessed 2024-12-26 (2014).
OneGeology. OneGeology portal. OneGeology https://portal.onegeology.org/OnegeologyGlobal/
SeaPROXY. https://dist.altervista.org/seaproxy/search.php?geodatabasePage=4
Mattei, G. et al. On the influence of vertical ground movements on late-quaternary sea-level records. A comprehensive assessment along the mid-Tyrrhenian coast of Italy (Mediterranean Sea). Quat Sci Rev. 279, 107384 (2022).
Mattei, G. & Vacchi, M. The geographic variability of the millennial sea-level changes along the coasts of Italy. Alp. Mediterr. Quat. 36(1), 63–74. https://doi.org/10.26382/AMQ.2023.01 (2023).
Shennan, Ian. “Handbook of sea‐level research: framing research questions.” In Handbook of sea-level research 3–25 https://doi.org/10.1002/9781118452547.ch2 (2015)
Khan, N. S. et al. Inception of a global atlas of sea levels since the Last Glacial Maximum. Quat. Sci. Rev. 220, 359–371. https://doi.org/10.1016/j.quascirev.2019.07.016 (2019).
Vigliardi, A. Il Musteriano della Grotta Taddeo (Marina di Camerota, Salerno). Riv. Sci. Preist. 23, 245–259 (1968).
Antonioli, F., Cinque, A., Ferranti, L. & Romano, P. Emerged and submerged quaternary marine terraces of Palinuro Cape (southern Italy). Mem. Descr. Carta Geol. d’Italia 52, 237–260 (1994).
Antonioli, F., Puglisi, C. & Silenzi, S. Rilevamento morfostratigrafico della costa emersa e sommersa del settore settentrionale del promontorio di Palinuro. Mem. Descr. Serv. Geol. Naz. 52, 225–236 (1997).
Russo, F. Segnalazione di un livello fossilifero riferibile al Tirreniano a Cala Bianca (Marina di Camerota, Salerno). Mem. Descr. Carta Geol. d’Italia 52, 395–398 (1994).
Ascione, A. & Romano, P. Vertical movements on the eastern margin of the tyrrhenian extensional basin. New data from Mt. Bulgheria (Southern Apennines, Italy). Tectonophysics 315((1-4)), 337–356. https://doi.org/10.1016/S0040-1951(99)00279-6 (1999).
Esposito, C. et al. Genesi, evoluzione e paleogeografia delle grotte costiere di Marina di Camerota (Parco Nazionale del Cilento e Vallo di Diano, Italia meridionale). Thalassia Salent. 26, 165–174 (2003).
Esposito, C. et al. Late quaternary shorelines in southern Cilento (Mt. Bulgheria): morphostratigraphy and chronology. Alp. Mediterr. Quat. 16(1), 3–14 (2003).
Martini, I. et al. Cave clastic sediments as a tool for refining the study of human occupation of prehistoric sites: insights from the cave site of La Cala (Cilento, southern Italy). J. Quat. Sci. 33(5), 586–596. https://doi.org/10.1002/jqs.3038 (2018).
Google Earth. Google Earth Pro version 7.3.6.9345 https://earth.google.com
Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).
Lundberg, S. M., & Lee, S. I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30 (2017).
Molnar, C. Interpretable Machine learning: a guide for making black box models explainable. leanpub. https://christophm.github.io/interpretable-ml-book/ (2020).
Tseng, P. Y. et al. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Crit. care 24, 1–13. https://doi.org/10.1186/s13054-020-03179-9 (2020).
Rasheed, K. et al. Explainable, trustworthy, and ethical machine learning for healthcare: a survey. Comput. Biol. Med. 149, 106043. https://doi.org/10.1016/j.compbiomed.2022.106043 (2022).
Brancaccio, L. et al. Segnalazione e datazione di depositi marini tirreniani sulla costa campana. Boll. Soc. Geol. Ital. 109, 259–265 (1990).
Cerrone, C., Vacchi, M., Fontana, A. & Rovere, A. Last interglacial sea-level proxies in the western mediterranean. Earth Syst. Sci. Data Discuss. 2021, 1–93. https://doi.org/10.5194/essd-13-4485-2021 (2021).
Bini, M. et al. An end to the last interglacial highstand before 120 ka: relative sea-level evidence from Infreschi Cave (Southern Italy). Quat. Sci. Rev. 250, 106658. https://doi.org/10.1016/j.quascirev.2020.106658 (2020).
Russo, N. Del Prete, S., Giulivo, I., A. Santo, A. Grotte e speleologia della Campania: atlante delle cavità naturali Elio Sellino Editore (2005).
EOX IT Services GmbH sentinel-2 cloudless mosaic. Data source: ESA Copernicus Sentinel-2 Licensed under CC-BY 4.0. (2020)
Acknowledgements
This work was developed within the scientific framework of the following projects, benefiting from discussions held during the meetings: •INQUA INR ONSEA – Evolution of Seascapes (INQUA CMP Project 2404); •context-AwaRe deCision-making for Autonomus unmmaneD vehicles in mArine environmental monitoring (ARCAD-IA) project (PE00000013_1 – CUP E63C22002150007) cascade call of the Future Artificial Intelligence Research (FAIR) project Spoke 3 – Resilient AI, within the National Recovery and Resilience Plan (PNRR) of the Italian Ministry of University and Research (MUR); •Working Group of the International Association of Geomorphology in Coastal Geoarchaeology •European Union – Next-GenerationEU – National Recovery and Resilience Plan (NRRP) – MISSION 4 COMPONENT 2, INVESTIMENT N. 1.1, CALL PRIN 2022 D.D. 104 02- 02-2022 – PRIN_2022ZSMRXJ “GAIA project- Geomorphological and hydrogeological vulnerability of Italian coastal areas in response to sea level rise and marine extreme events CUP I53D23002130006. We are grateful to the Soprintendenza Archeologia, Belle Arti e Paesaggio for the provinces of Salerno and Avellino for their collaboration and for authorizing fieldwork activities in the study area. We sincerely thank Luigi De Luca for his valuable support in drone data acquisition and processing, and Francesco Peluso for his indispensable support and insightful discussions throughout the research. This study made use of the following softwares: ArcMap 10.4 (Esri, https://www.esri.com), QGIS version 3.38.3 (QGIS Development Team, https://qgis.org), and Inkscape version 1.4.2 (Inkscape Project, https://inkscape.org). Digital Terrain Model (DTM) data were obtained from TINITALY DEM (https://tinitaly.pi.ingv.it/), DBM from EMODnet (https://emodnet.ec.europa.eu/). Original geological data were based on OneGeology (https://portal.onegeology.org/OnegeologyGlobal/) and the geological sketch by Monti et al. (2014): Carta Geologica d’Italia Sapri-Foglio 520 della carta 1:50.000 dell’IGM. All figures and illustrations were created by the authors. We sincerely thank the Editor and the Reviewers for their constructive comments and insightful suggestions, which significantly improved the clarity and quality of this manuscript.
Author information
Authors and Affiliations
Contributions
GM contributed to the conception, acquisition, analysis, interpretation of data, creation of new software used in the work, and writing of the draft and revised versions. AS contributed to the conception, acquisition, analysis, interpretation of data, creation of new software used in the work, and writing of the draft and revised versions. GP contributed to the conception and supervision. AC contributed to the conception and creation of new software used in the work. PPCA contributed to the conception, analysis, interpretation of data, and supervision. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Supplementary Information 1.
Supplementary Information 2.
Supplementary Information 3.
Supplementary Information 4.
Supplementary Information 5.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Mattei, G., Sorrentino, A., Pappone, G. et al. Reconstructing Late Quaternary coastal landscapes by a machine-learning framework.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-31006-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-31006-0
Keywords
- Coastal landforms
- Coastal change
- Sea level change
- Coastal paleo-landscape
- Automated mapping
- Mediterranean area
Source: Ecology - nature.com
