Abstract
Extensive livestock farming has been described only in part, with previous studies focusing mainly on individual aspects such as the breeds reared, economic profitability, or environmental impact. However, the current scenario of increasing climate uncertainty highlights the need for a more comprehensive description of typologies of extensive production systems. In this study, 52 dehesa farms were analysed between 2021 and 2022 using technical, economic and environmental indicators. To determine their main characteristics, a Principal Component Analysis was conducted, followed by Cluster Analysis. Three factors were identified: (i) level of intensification and emissions, (ii) land tenure and labour and (iii) dependence on CAP subsidies. These factors explained 67.63% of total variance, and based on them, four farm types were classified. Results showed that less intensive farms had lower environmental impact (cluster 1, 2, 3: 991.99, 727.20 and 1049.87 kg CO2eq ha-1 year-1, respectively) and lower dependence on external inputs. More intensified farms (cluster 4: 2183.58 kg CO2eq ha-1 year-1), although emissions were higher, showed better economic performance. Cluster 3 represented the most sustainable model since farms combined good technical and economic performance while applying regenerative environmental management practices. This classification can support the development of tailored management strategies to guide extensive livestock systems towards improved sustainability and resilience.
Similar content being viewed by others
Models for sustainable management of livestock waste based on neural network architectures
Spatiotemporal evolution regional differences and decoupling effects of greenhouse gas emissions from animal husbandry in Henan Province
Estimating the environmental Kuznets curve for cattle production and environmental degradation in Latin America, Africa, and Southeast Asia
Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. Corresponding author: [email protected].
References
Steinfeld, H. et al. Livestock’s long shadow: Environmental issues and options. Renewable Resources Journal (2006).
Bernués, A. et al. Exploring social preferences for ecosystem services of multifunctional agriculture across policy scenarios. Ecosyst. Serv. 39, 101002 (2019).
Pardo, G., Casas, R., del Prado, A. & Manzano, P. Carbon footprint of transhumant sheep farms: accounting for natural baseline emissions in Mediterranean systems. Int. J. Life Cycle Assess. 29, 2184–2199 (2024).
Reyes-Palomo, C. et al. Carbon sequestration offsets a large share of GHG emissions in dehesa cattle production. J. Clean. Prod. 358, 131918 (2022).
Escribano, A. J., Gaspar, P., Mesías, F. J. & Escribano, M. The role of the level of intensification, productive orientation and self-reliance in extensive beef cattle farms. Livest Sci 193, 8–19 (2016).
Gaspar, P., Mesías, F. J., Escribano, M., Rodriguez de Ledesma, A. & Pulido, F. Economic and management characterization of dehesa farms: Implications for their sustainability. Agrofor. Syst. 71(3), 151–162 (2007).
Eldesouky, A., Mesias, F. J., Elghannam, A. & Escribano, M. Can extensification compensate livestock greenhouse gas emissions? A study of the carbon footprint in Spanish agroforestry systems. J. Clean. Prod. 200, 28–38 (2018).
Reyes-Palomo, C. et al. Free-range acorn feeding results in negative carbon footprint of Iberian pig production in the dehesa agro-forestry system. J. Clean. Prod. 418, 138170 (2023).
Horrillo, A., Gaspar, P., Rodríguez-Ledesma, A. & Escribano, M. Assessment of greenhouse gas emissions and carbon sequestration in dairy goat farming systems in northern extremadura. Spain. Animals 14, 3501 (2024).
Escribano, M., Horrillo, A. & Mesías, F. J. Greenhouse gas emissions and carbon sequestration in organic dehesa livestock farms. Does technical-economic management matters? J Clean Prod 372, 133779 (2022).
Escribano, M., Elghannam, A. & Mesias, F. J. Dairy sheep farms in semi-arid rangelands: A carbon footprint dilemma between intensification and land-based grazing. Land Use Policy 95, 104600 (2020).
Martin, G. et al. Potential of multi-species livestock farming to improve the sustainability of livestock farms: A review. Agric Syst 181, 102821 (2020).
Rodriguez-Estevez, V. et al. Consumption of Acorns by Finishing Iberian Pigs and Their Function in the Conservation of the Dehesa Agroecosystem. in Agroforestry for Biodiversity and Ecosystem Services – Science and Practice (InTech, 2012).
Rolo, V., Rivest, D., Maillard, É. & Moreno, G. Agroforestry potential for adaptation to climate change: A soil-based perspective. Soil Use Manag 39, 1006–1032 (2023).
MAPA. Plan Estratégico de La PAC de España 2023–2027. Ministerio de Agricultura, Pesca y Alimentación. https://www.mapa.gob.es/es/pac/post-2020/pepac.aspx%0A%0A (2023).
Escribano, M., Horrillo, A., Rodríguez-Ledesma, A. & Gaspar, P. Stakeholders’ perception on the role of extensive livestock farming in the fight against climate change. Renewable Agric. Food Syst. 39, e21 (2024).
Bastanchury-López, M. T., De-Pablos-Heredero, C., Martín-Romo-Romero, S. & García, A. Assessment of Key Feeding Technologies and Land Use in Dairy Sheep Farms in Spain. Land (Basel) 11, 177 (2022).
Genest-Richard, P., Halde, C., Breune, I., Mundler, P. & Devillers, N. Multivariate analysis of economic performance and environmental impacts of multispecies pastured livestock farms using direct marketing. Agric Syst 225, 104276 (2025).
Gonzalez-Ronquillo, M. et al. Typification and characterization of different livestock production systems of mediterranean dairy sheep farms with different degrees of intensification: A comparative study. Animals 15, 448 (2025).
Ayala, M. C. et al. Characterizing beef and sheep farming systems to customize sustainability interventions and policy implementation. J. Environ. Manage. 366, 121900 (2024).
Bousbia, A. et al. Typology analysis of cattle farms in Northeast Algeria: Potential for sustainable development. Agric. Syst. 218, 103995 (2024).
Huber, R. et al. Farm typologies for understanding farm systems and improving agricultural policy. Agric. Syst. 213, 103800 (2024).
Fariña, S. et al. Milk production systems in Latin America and the Caribbean: Biophysical, socio-economic, and environmental performance. Agric. Syst. 218, 103987 (2024).
Morales-Jerrett, E., Mena, Y., Camúñez-Ruiz, J. A., Fernández, J. & Mancilla-Leytón, J. M. Characterization of dairy goat production systems using autochthonous breeds in Andalusia (Southern Spain): Classification and efficiency comparative analysis. Small Rumin. Res. 213, 106743 (2022).
Upadhaya, S., Arbuckle, J. G. & Schulte, L. A. Developing farmer typologies to inform conservation outreach in agricultural landscapes. Land Use Policy 101, 105157 (2021).
González-Quintero, R. et al. Environmental impact of primary beef production chain in Colombia: Carbon footprint, non-renewable energy and land use using Life Cycle Assessment. Sci. Total Environ. 773, 145573 (2021).
Ruiz, F. A., Vázquez, M., Camuñez, J. A., Castel, J. M. & Mena, Y. Characterization and challenges of livestock farming in Mediterranean protected mountain areas (Sierra Nevada, Spain). Span. J. Agric. Res. 18, e0601 (2020).
Musafiri, C. M. et al. Farming systems’ typologies analysis to inform agricultural greenhouse gas emissions potential from smallholder rain-fed farms in Kenya. Sci Afr 8, e00458 (2020).
Gourdouvelis, D., Dotas, V., Kaimakamis, I., Zagorakis, K. & Yiakoulaki, M. Typology and structural characterisation of suckler cow farming system in Central Macedonia. Greece. Ital J Anim Sci 18, 1082–1092 (2019).
Foguesatto, C. R., Borges, J. A. R. & Machado, J. A. D. Farmers’ typologies regarding environmental values and climate change: Evidence from southern Brazil. J. Clean Prod. 232, 400–407 (2019).
Díaz-Gaona, C., Sánchez-Rodríguez, M., Rucabado-Palomar, T. & Rodríguez-Estévez, V. A typological characterization of organic livestock farms in the natural park sierra de grazalema based on technical and economic variables. Sustainability 11, 6002 (2019).
Makate, C., Makate, M. & Mango, N. Farm types and adoption of proven innovative practices in smallholder bean farming in Angonia district of Mozambique. Int J Soc Econ 45, 140–157 (2018).
Kamau, J. W., Stellmacher, T., Biber-Freudenberger, L. & Borgemeister, C. Organic and conventional agriculture in Kenya: A typology of smallholder farms in Kajiado and Murang’a counties. J. Rural Stud. 57, 171–185 (2018).
Gelasakis, A. I. et al. Typology and characteristics of dairy goat production systems in Greece. Livest Sci. 197, 22–29 (2017).
Mena, Y., Ruiz-Mirazo, J., Ruiz, F. A. & Castel, J. M. Characterization and typification of small ruminant farms providing fuelbreak grazing services for wildfire prevention in Andalusia (Spain). Sci. Total Environ. 544, 211–219 (2016).
Kuivanen, K. S. et al. Characterising the diversity of smallholder farming systems and their constraints and opportunities for innovation: A case study from the Northern Region, Ghana. NJAS: Wageningen Journal of Life Sciences 78, 153–166 (2016).
Goswami, R., Chatterjee, S. & Prasad, B. Farm types and their economic characterization in complex agro-ecosystems for informed extension intervention: study from coastal West Bengal. India. Agric. Food Econ. 2, 5 (2014).
Franco, J. A., Gaspar, P. & Mesias, F. J. Economic analysis of scenarios for the sustainability of extensive livestock farming in Spain under the CAP. Ecol. Econ. 74, 120–129 (2012).
Díaz-Gaona, C., Sánchez-Rodríguez, M. & Rodríguez-Estévez, V. Assessment of the sustainability of extensive livestock farms on the common grasslands of the natural park sierra de grazalema. Sustain. (Switzerland) 13, 1–19 (2021).
Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 1979(360), 987–992 (2018).
Horrillo, A., Gaspar, P. & Escribano, M. Organic farming as a strategy to reduce carbon footprint in dehesa agroecosystems: A case study comparing different livestock products. Animals 10, 162 (2020).
Buratti, C. et al. Carbon footprint of conventional and organic beef production systems: An Italian case study. Sci. Total Environ. 576, 129–137 (2017).
Röös, E., Sundberg, C., Tidåker, P., Strid, I. & Hansson, P.-A. Can carbon footprint serve as an indicator of the environmental impact of meat production?. Ecol Indic 24, 573–581 (2013).
MITECO. Cuarto Inventario Forestal Nacional EXTREMADURA. https://cpage.mpr.gob.es (2020).
Gaspar, P., Escribano, M., Mesías, F. J., De Ledesma, A. R. & Pulido, F. Sheep farms in the Spanish rangelands (dehesas): Typologies according to livestock management and economic indicators. Small Ruminant Res. 74(1–3), 52–63 (2008).
Carricondo, A., Peiteado, C. & Bécares, J. ¿Quien contamina cobra?: Relación entre la Política Agraria Común y el medio ambiente en España. 1–8 (2010).
Olea, L. & San Miguel-Ayanz, A. The Spanish dehesa. A traditional Mediterranean silvopastoral system linking production and nature conservation. in Sustainable grassland productivity: Proceedings of the 21st General Meeting of the European Grassland Federation. Badajoz (Spain) April 2006 3–13 (Badajoz (Spain), 2006).
Escribano, M., Rodríguez de Ledesma, A., Mesías, F. J. & Pulido, F. Tipología de sistemas adehesados. Archivos de Zootecnia 50, 411–414 (2001).
Escribano, M., Rodríguez de Ledesma, A., Mesías, F. J. & Pulido, F. Niveles de cargas ganaderas en la dehesa extremeña. Archivos de zootecnia 51, 315–326 (2002).
Martín, M., Escribano, M., Rodríguez de Ledesma, A., Pulido, F. & Mesías, F. J. Sistemas extensivos de producción animal. Archivos de zootecnia 50 (191), 465–489 (2001).
European Communities. Manual on the Economic Accounts for Agriculture and Forestry EAA/EAF. Office for Official Plublications of the European Communities http://europa.eu.int (2000).
ISO. International Standard 14044:2006. in Environmental management – Life cycle assessement – Requirements and guidelines, ISO 14044, International Organization for Standardization (Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr., Geneva, Switzerland, 2006).
ISO. International Standard 14040:2006. in Environmental management – Life cycle assessement – Requirements and guidelines, ISO 14040, International Organization for Standardization (Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr., Geneva, Switzerland, 2006).
IPCC. Refinement to the 2006 IPCC Guidlines for National Greenhouse Gas Inventories, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (Eds). Published: IPCC, Switzerlan. (2019).
MITECO. Informe de Inventario Nacional de Emisiones de Gases de Efecto Invernadero. vol. 2024 https://cpage.mpr.gob.es/ (2024).
IPCC. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Inter- Governmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (Eds)], Cambridge University Press, Cambridge, U. (2007).
Gavrilova, O. et al. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 10: Emissions form Livestock and Manure Management. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories vol. 4 209 (2019).
MAPA. Porcino Ibérico. Bases Zootécnicas Para El Cálculo Del Balance Alimentario de Nitrógeno y de Fósforo. Ministerio de Agricultura, Pesca y Alimentación https://cpage.mpr.gob.es/producto/porcino-blanco/ (2020).
MAPA. Bovino. Bases Zootécnicas Para El Cálculo Del Balance Alimentario de Nitrógeno y de Fósforo. Ministerio de Agricultura, Pesca y Alimentación https://www.mapa.gob.es/es/ganaderia/temas/ganaderia-y-medio-ambiente/baseszootecnicascalculonitrogenoyfosforomarzo2020_tcm30-440945.pdf (2019).
MAPA. Ovino. Bases Zootécnicas Para El Cálculo Del Balance Alimentario de Nitrógeno y de Fósforo. Ministerio de Agricultura, Pesca y Alimentación. https://www.mapa.gob.es/es/ganaderia/temas/ganaderia-y-medioambiente/baseszootecnicascalculonitrogenoyfosforomarzo2020_tcm30-440945.pdf (2019).
Hergoualc’h, K. et al. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 1–54 (2019).
Petersen, B. M., Knudsen, M. T., Hermansen, J. E. & Halberg, N. An approach to include soil carbon changes in life cycle assessments. J Clean Prod 52, 217–224 (2013).
Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis. (Pearson Education Limited, Harlow, 2014).
Gaspar, P., Escribano, A. J., Mesías, F. J., Escribano, M. & Pulido, A. F. Goat systems of Villuercas-Ibores area in SW Spain: Problems and perspectives of traditional farming systems. Small Rumin. Res. 97, 1–11 (2011).
Mądry, W. et al. An overview of farming system typology methodologies and its use in the study of pasture-based farming system: a review. Span. J. Agric. Res. 11, 316 (2013).
Riveiro, J. A., Mantecón, A. R., Álvarez, C. J. & Lavín, P. A typological characterization of dairy Assaf breed sheep farms at NW of Spain based on structural factor. Agric. Syst. 120, 27–37 (2013).
Frascarelli, A. et al. Comparative techno-economic and carbon footprint analysis of semi-extensive and intensive beef farming. Agriculture 15, 472 (2025).
Tinitana-Bayas, R., Sanjuán, N., Jiménez, E. S., Lainez, M. & Estellés, F. Assessing the environmental impacts of beef production chains integrating grazing and landless systems. animal 18, 101059 (2024).
Hammar, T., Hansson, P.-A. & Röös, E. Time-dependent climate impact of beef production – can carbon sequestration in soil offset enteric methane emissions?. J. Clean. Prod. 331, 129948 (2022).
Lunesu, M. F. et al. Applying an indirect method to assess the net carbon footprint of dairy sheep farms with a special focus on suckling lamb. Ital. J. Anim. Sci. 24, 689–710 (2025).
Knudsen, M. T. et al. The importance of including soil carbon changes, ecotoxicity and biodiversity impacts in environmental life cycle assessments of organic and conventional milk in Western Europe. J. Clean. Prod. 215, 433–443 (2019).
Alemu, A. W. et al. Assessment of grazing management on farm greenhouse gas intensity of beef production systems in the Canadian Prairies using life cycle assessment. Agric Syst 158, 1–13 (2017).
Terres, J.-M. et al. Farmland abandonment in Europe: Identification of drivers and indicators, and development of a composite indicator of risk. Land Use Policy 49, 20–34 (2015).
Eurostat. Farm structure survey – farmers by age and characteristics. Eurostat Statistics Explained (2023).
Daniele, B.-C. The farm succession effect on farmers’ management choices. Land Use Policy 137, 107014 (2024).
Obame, R. G. M. et al. On-farm carbon capturing strategies to reduce carbon footprint. in Agriculture Toward Net Zero Emissions 99–124 (Elsevier, 2025).
Paustian, K., Larson, E., Kent, J., Marx, E. & Swan, A. Soil C Sequestration as a Biological Negative Emission Strategy. Front. Climate 1, 1–11 (2019).
MAPA. Ovino. Bases Zootécnicas Para El Cálculo Del Balance Alimentario de Nitrógeno y de Fósforo. Ministerio de Agricultura, Pesca y Alimentación https://www.mapa.gob.es/es/ganaderia/temas/ganaderia-y-medio-ambiente/baseszootecnicascalculonitrogenoyfosforomarzo2020_tcm30-440945.pdf (2019).
Soussana, J. F., Tallec, T. & Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4, 334–350 (2010).
Kiran, K. K., Pal, S., Chand, P. & Kandpal, A. Carbon sequestration potential of sustainable agricultural practices to mitigate climate change in Indian agriculture: A meta-analysis. Sustain. Prod. Consum. 35, 697–708 (2023).
Mcdonald, H. et al. Carbon farming Making agriculture fit for 2030 Policy Department for Economic, Scientific and Quality of Life Policies Directorate-General for Internal Policies. European Parliament 67 (2021).
Benitez-Altuna, F., Trienekens, J. & Gaitán-Cremaschi, D. Categorizing the sustainability of vegetable production in Chile: a farming typology approach. Int. J. Agric. Sustain. 21, (2023).
Bartkowski, B., Schüßler, C. & Müller, B. Typologies of European farmers: approaches, methods and research gaps. Reg. Environ. Change. 22, 43 (2022).
Graskemper, V., Yu, X. & Feil, J.-H. Farmer typology and implications for policy design – An unsupervised machine learning approach. Land Use Policy 103, 105328 (2021).
Stetter, C., Mennig, P. & Sauer, J. Using machine learning to identify heterogeneous impacts of agri-environment schemes in the EU: A case study. Eur. Rev. Agric. Econ. 49, 723–759 (2022).
Acknowledgments
This paper has been jointly funded (85%) by the European Union, European Regional Development Fund and the Regional Government of Extremadura. Managing Authority: Ministry of Finance. Grant Ref. GR24147.
Funding
The funding was provided by the Junta de Extremadura and FEDER Funds (Grant GR24147).
Author information
Authors and Affiliations
Contributions
Conceptualization, A.H., M.E., P.G. and A.R.L.; methodology, A.H. and M.E.; formal analysis, A.H. and M.E.; investigation, A.H., M.E., P.G. and A.R.L.; data curation, A.H. and M.E.; writing—original draft preparation, A.H., A.R.L. and M.E.; writing—review and editing, A.H., M.E., P.G. and A.R.L.; visualization, A.H. and M.E.; supervision, M.E. and P.G.; project administration, M.E. and P.G.; funding acquisition, M.E., A.R.L. and P.G. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Supplementary Information.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Horrillo, A., Gaspar, P., Rodríguez-Ledesma, A. et al. Integrated assessment of greenhouse gas emissions in extensive livestock farming systems.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-32814-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-32814-0
Keywords
- Extensive farms
- Dehesa
- Climate change
- Cluster
- Carbon footprint
- Regenerative management practices
Source: Ecology - nature.com
