in

Optimizing salinity and stocking density for red tilapia in zero-water-exchange biofloc system: integrated performance, physiological, and economic assessment


Abstract

This study investigated the interactive effects of salinity levels (0‰, 18‰, and 36‰) and stocking densities (50, 100, 150, and 200 fish/m3) on water quality, growth performance, physiological responses, and economic returns of red tilapia (Oreochromis spp., initial weight of 12.33 ± 2.51 g/fish) reared in a biofloc technology (BFT) system using saline groundwater. A 3 × 4 factorial design with 36 fiberglass tanks (1 m3 each) was employed for 6 months. Key water quality indicators, fish growth indices, hematological and biochemical markers, antioxidant enzymes, immune parameters, and economic performance metrics were assessed. Results showed that increasing salinity and density significantly reduced dissolved oxygen (DO) levels and increased total ammonia nitrogen (TAN), NH3, NO2, and NO3 concentrations (p < 0.001). Biofloc volume (BFV) increased with stocking density across salinities, peaking at 44.4 ± 1.06 mL/L at 0‰ and 200 fish/m3, while higher salinity (36‰) generally reduced BFV. Variations in biofloc composition (protein 22–33%) and fish muscle composition (protein and lipid reduction at 36‰ and 200 fish/m3) indicated metabolic adjustments under stress. The highest final weight (261 ± 1.69 g/fish) was observed at 36‰ salinity with low stocking density (50 fish/m3), whereas the most favorable combination of growth rate, feed conversion ratio, and protein efficiency ratio occurred at 18‰ salinity and moderate stocking densities (100–150 fish/m3). Growth performance and feed utilization declined markedly at 36‰ with high density (200 fish/m3). Hematological indicators (RBC, Hb, Hct) and immune biomarkers (lysozyme, IgM, complement C3) were suppressed at extreme salinity-density combinations, while oxidative stress (high MDA) and hepatic dysfunction (elevated AST and ALT) were evident. Economic analysis confirmed that 18‰ salinity with 200 fish/m3 yielded the highest profit (1000 ± 54.8 EGP/treatment) and lowest operating ratio, while 150 fish/m3 at the same salinity provided slightly lower profit but better fish welfare indicators and immune responses, whereas high-density and hypersaline conditions reduced profitability due to poor growth and increased feed costs. In conclusion, 18‰ salinity combined with 100–150 fish/m3 provides the optimal balance between biological performance, fish welfare, and economic viability in red tilapia BFT systems. These findings offer evidence-based guidelines for sustainable inland saline aquaculture, supporting enhanced production efficiency and profitability in arid and saline-prone regions.

Similar content being viewed by others

Long term dietary Moringa oleifera leaf extract to Florida red tilapia Oreochromis sp improves performance immunity maturation and reproduction in saltwater

Mathematical model for predicting oxygen concentration in tilapia fish farms

Immunomodulatory, antioxidant, and growth-promoting properties of Avicennia marina leaf extract on Nile tilapia

Data availability

Data are available from the corresponding author upon reasonable request.

References

  1. Dewali, S. et al. Aquaculture: Contributions to global food security. In Emerging Solutions in Sustainable Food and Nutrition Security. (eds Ghosh, S., Kumari Panda, A., Jung, C., & Singh Bisht, S.) 123–139 (Springer, 2023). https://doi.org/10.1007/978-3-031-40908-0_6.

    Google Scholar 

  2. Saidu, M. Contributions of fisheries and aquaculture to food security in Africa. In Food Security, Nutrition and Sustainability Through Aquaculture Technologies. (eds Sundaray, J. K., Rather, M. A., Ahmad, I. & Amin, A.) 493–502 (Springer Nature Switzerland, 2025). https://doi.org/10.1007/978-3-031-75830-0_28 (2025).

    Google Scholar 

  3. Avnimelech, Y. Biofloc Technology: A Practical Guide Book. (CABI Databases, 2009).

    Google Scholar 

  4. Ahmad, I., Babitha Rani, A. M., Verma, A. K. & Maqsood, M. Biofloc technology: An emerging avenue in aquatic animal healthcare and nutrition. Aquacult. Int. 25, 1215–1226. https://doi.org/10.1007/s10499-016-0108-8 (2017).

    Google Scholar 

  5. Khanjani, M. H. & Sharifinia, M. Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquacult. Int. 30, 383–397. https://doi.org/10.1007/s10499-021-00803-5 (2022).

    Google Scholar 

  6. Rai, N., Panigrahi, A., Julka, J. M., Nan, F. H. & Das, S. P. Biofloc technology for sustainable aquaculture: Microbial regulation, nutrient dynamics, and integrated system approaches. J. Water Process. Eng. 78, 108730. https://doi.org/10.1016/j.jwpe.2025.108730 (2025).

    Google Scholar 

  7. Azim, M. E. & Little, D. C. The Biofloc technology (BFT) in indoor tanks: Water quality, Biofloc composition, and growth and welfare of nile tilapia (Oreochromis niloticus). Aquaculture 283, 29–35. https://doi.org/10.1016/j.aquaculture.2008.06.036 (2008).

    Google Scholar 

  8. Emerenciano, M. G. C., Gaxiola, G., & Cuzon, G. Biofloc technology (BFT): A review for aquaculture application and animal food industry. In Biomass Now – Cultivation and Utilization (ed Matovic, M. D.) (IntechOpen, 2013). https://doi.org/10.5772/53902

    Google Scholar 

  9. Haraz, Y. G., Shourbela, R. M., El-Hawarry, W. N., Mansour, A. M. & Elblehi, S. S. Performance of juvenile Oreochromis niloticus (Nile tilapia) raised in conventional and Biofloc technology systems as influenced by probiotic water supplementation. Aquaculture 566, 739180. https://doi.org/10.1016/j.aquaculture.2022.739180 (2023).

    Google Scholar 

  10. Khondoker, M., Mandal, S., Gurav, R., Hwang, S. Freshwater shortage, salinity increase, and global food production: A need for sustainable irrigation water desalination—A scoping review. Earth. 4, 223–240. https://doi.org/10.3390/earth4020012 (2023).

    Google Scholar 

  11. Khanjani, M. H., Sharifinia, M. & Hajirezaee, S. Strategies for promoting sustainable aquaculture in arid and Semi-arid areas–a review. Annals Anim. Sci. 24, 293–305. https://doi.org/10.2478/aoas-2023-0073 (2024).

    Google Scholar 

  12. Verma, A. K. et al. Combating water scarcity through inland saline aquaculture: Challenges and opportunities. Biochem. Cell. Arch. (2024). https://doi.org/10.51470/bca.2024.24.1-S.4099

    Google Scholar 

  13. Qadir, M. et al. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum. 38, 282–295. https://doi.org/10.1111/1477-8947.12054 (2014).

    Google Scholar 

  14. Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 57, 1017–1023 (2006).

    Google Scholar 

  15. Freire, C. A. & Sampaio, F. D. F. Chapter 7 – Stress and disease in aquaculture, and their effects on homeostasis and osmoregulation: The metabolic connection. In: Aquaculture Pharmacology. (eds Kibenge, F. S. B., Baldisserotto, B. & Chong, R. S. M.) 273–295 (Academic, 2021). https://doi.org/10.1016/B978-0-12-821339-1.00010-6.

    Google Scholar 

  16. Mkulo, E. M. et al. Exploring salinity adaptation in teleost fish, focusing on omics perspectives on osmoregulation and gut microbiota. Front. Mar. Sci. 12, 1559871 https://doi.org/10.3389/fmars.2025.1559871 (2025).

    Google Scholar 

  17. Balcázar, J. L. et al. The role of probiotics in aquaculture. Vet. Microbiol. 114, 173–186. https://doi.org/10.1016/j.vetmic.2006.01.009 (2006).

    Google Scholar 

  18. Liu, G. et al. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in Biofloc systems. Fish Shellfish Immunol. 81, 416–422. https://doi.org/10.1016/j.fsi.2018.07.047 (2018).

    Google Scholar 

  19. Khanjani, M. H. & Sharifinia, M. Feeding nile tilapia with varying levels of biofloc: Effect on growth performance, survival rate, digestive and liver enzyme activities, and mucus immunity. Aquacult. Int. 32, 8171–8194. https://doi.org/10.1007/s10499-024-01561-w (2024).

    Google Scholar 

  20. Chen, Z. et al. Water quality, microbial community and shrimp growth performance of Litopenaeus vannamei culture systems based on Biofloc or biofilters. Aquac. Res. 52, 6656–6666. https://doi.org/10.1111/are.15535 (2021).

    Google Scholar 

  21. Abdel Fattah, F. et al. Effect of the different stocking density on behavior, performance and welfare of the nile tilapia (Oreochromis niloticus). Egypt. J. Aquat. Biology Fisheries. 24, 539–560. https://doi.org/10.21608/ejabf.2020.109369 (2020).

    Google Scholar 

  22. Rahman, M. M., Mondal, D. K., Amin, M. R. & Muktadir, M. G. Impact of stocking density on growth and production performance of monosex tilapia (Oreochromis niloticus) in ponds. Asian J. Med. Biol. Res. 2, 471–476 (2016).

    Google Scholar 

  23. Shamsuddin, M. et al. Effects of stocking larger-sized fish on water quality, growth Performance, and the economic yield of nile tilapia (Oreochromis niloticus L.) in floating cages. Agriculture 12, 942. https://doi.org/10.3390/agriculture12070942 (2022).

    Google Scholar 

  24. Jewel, M. A. S. et al. Effect of stocking density on the growth, body composition, and blood parameters of cage-reared gangetic Mystus catfish (Mystus cavasius). Aquaculture Rep. 28, 101428. https://doi.org/10.1016/j.aqrep.2022.101428 (2023).

    Google Scholar 

  25. Bayunova, L., Barannikova, I. & Semenkova, T. Sturgeon stress reactions in aquaculture. J. Appl. Ichthyol. 18, 397–404 (2002).

    Google Scholar 

  26. Long, L. et al. Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 219, 25–34. https://doi.org/10.1016/j.cbpc.2019.02.002 (2019).

    Google Scholar 

  27. Ellis, T. et al. The relationships between stocking density and welfare in farmed rainbow trout. J. Fish Biol. 61, 493–531. https://doi.org/10.1111/j.1095-8649.2002.tb00893.x (2002).

    Google Scholar 

  28. Lupatsch, I., Santos, G. A., Schrama, J. W. & Verreth, J. A. J. Effect of stocking density and feeding level on energy expenditure and stress responsiveness in European sea bass Dicentrarchus labrax. Aquaculture 298, 245–250. https://doi.org/10.1016/j.aquaculture.2009.11.007 (2010).

    Google Scholar 

  29. Ni, M. et al. Effects of stocking density on mortality, growth and physiology of juvenile Amur sturgeon (Acipenser schrenckii). Aquac. Res. 47, 1596–1604. https://doi.org/10.1111/are.12620 (2016).

    Google Scholar 

  30. Sallam, G. R. et al. Integrated Biofloc technology in red tilapia aquaculture: Salinity-dependent effects on water quality, parental stock physiology, reproduction, and immune responses. Aquacult. Int. 32, 8731–8761. https://doi.org/10.1007/s10499-024-01588-z (2024).

    Google Scholar 

  31. Ashley, P. J. Fish welfare: Current issues in aquaculture. Appl. Anim. Behav. Sci. 104, 199–235. https://doi.org/10.1016/j.applanim.2006.09.001 (2007).

    Google Scholar 

  32. Hoseini, S. M. et al. Effects of rearing density and dietary Tryptophan supplementation on intestinal immune and antioxidant responses in rainbow trout (Oncorhynchus mykiss). Aquaculture 528, 735537. https://doi.org/10.1016/j.aquaculture.2020.735537 (2020).

    Google Scholar 

  33. Mohammadi, G., Rohani-Ghadikolaei, K. & Abdolalian, E. Water quality and growth performance of Litopenaeus vannamei at different stocking densities in a chemoautotrophic-based system with limited organic carbon supplementation during the nursery phase. Aquacult. Int. 32, 3917–3933. https://doi.org/10.1007/s10499-023-01357-4 (2024).

    Google Scholar 

  34. Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research*. J. Cereb. Blood Flow. Metabolism. 40, 1769–1777. https://doi.org/10.1177/0271678X20943823 (2020).

    Google Scholar 

  35. El–Husseiny, O. M., Goda, A. M. A., Mabroke, R. S. & Souady, M. Optimal stocking density for nile tilapia, Orechromis niloticus within Biofloc system. Annals Agric. Sci. Moshtohor. 52, 197–204. https://doi.org/10.21608/assjm.2014.111633 (2014).

    Google Scholar 

  36. Rahmatullah, R., Das, M. & Rahmatullah, S. Suitable stocking density of tilapia in an aquaponic system. Bangladesh J. Fisheries Res. 14, 29–35 (2010).

    Google Scholar 

  37. Sallam, G. R. et al. Strategic application of Biofloc technology for optimizing physiological homeostasis and reproductive efficiency in red tilapia (Oreochromis spp.) broodstock under long-term rearing conditions. Aquacult. Int. 33, 464. https://doi.org/10.1007/s10499-025-02141-2 (2025).

    Google Scholar 

  38. FAO. Globally Harmonized System of Classification and Labelling of Chemicals (GHS) (Food and Agriculture Organization of the United Nations (FAO), 2009).

    Google Scholar 

  39. Avnimelech, Y. Intensive Production of Shrimp 233–246 (CABI Books, 2010). https://doi.org/10.1079/9781800629349.0009

    Google Scholar 

  40. Council, N. R. Nutrient Requirements of Fish and Shrimp (National Academies, 2011). https://doi.org/10.17226/13039

    Google Scholar 

  41. Emerson, K., Russo, R. C., Lund, R. E. & Thurston, R. V. Aqueous ammonia equilibrium calculations: Effect of pH and temperature. J. Fish. Res. Board Can. 32, 2379–2383. https://doi.org/10.1139/f75-274 (1975).

    Google Scholar 

  42. Ahmad, I. et al. Carbon sources affect water quality and haemato-biochemical responses of Labeo Rohita in zero-water exchange Biofloc system. Aquac. Res. 50, 2879–2887. https://doi.org/10.1111/are.14241 (2019).

    Google Scholar 

  43. Sallam, G. R. et al. Salinity-dependent effects of integrated Biofloc technology on reproductive performance, biological responses, and offspring quality in red tilapia aquaculture. Aquacult. Int. 33, 135. https://doi.org/10.1007/s10499-024-01804-w (2025).

    Google Scholar 

  44. Tefal, E. et al. Feeding of rainbow trout (Oncorhynchus mykiss) with organic ingredients replacing fish meal. Aquaculture 592, 741257. https://doi.org/10.1016/j.aquaculture.2024.741257 (2024).

    Google Scholar 

  45. Nageswari, P., Verma, A. K., Gupta, S., Jeyakumari, A. & Mallikarjun Hittinahalli, C. Haematological, serum biochemical and anti-oxidative enzymes responses of Sutchi catfish (Pangasianodon hypophthalmus) against Aeromonas hydrophila using various carbon sources in Biofloc system. Aquac. Res. 53, 1851–1861. https://doi.org/10.1111/are.15713 (2022).

    Google Scholar 

  46. Nageswari, P., Verma, A. K., Gupta, S., Jeyakumari, A. & Hittinahalli, C. M. Effects of different stocking densities on haematological, non-specific immune, and antioxidant defence parameters of striped catfish (Pangasianodon hypophthalmus) fingerlings reared in finger millet-based Biofloc system. Aquacult. Int. 30, 3229–3245. https://doi.org/10.1007/s10499-022-00958-9 (2022).

    Google Scholar 

  47. Hendricks, L. J. Erythrocyte counts and hemoglobin determinations for two species of suckers, genus Catostomus, from Colorado. Copeia 1952, 265–266 (1952).

    Google Scholar 

  48. Shaw, A. F.B. A direct method for counting the leukocytes, thrombocytes and erythrocytes of birds’s blood. J. Pathol. Bacteriol. 33, 833–835. https://doi.org/10.1002/path.1700330326 (1930).

    Google Scholar 

  49. van Kampen, E. J. & Zijlstra, W. G. Standardization of hemoglobinometry II. The hemiglobincyanide method. Clin. Chim. Acta. 6, 538–544. https://doi.org/10.1016/0009-8981(61)90145-0 (1961).

    Google Scholar 

  50. Boon, J. & Booms, Y. A. H. Effects on Anguillicola crassus and trypanosoma granulosum in-fections on peripheral blood cells of European eel. Bull. Eur. Ass Fish. Pathol. 10, 143 (1990).

    Google Scholar 

  51. AOAC. Official methods of analysis of AOAC Int. (2007).

  52. Makled, S. O., Hamdan, A. M. & El-Sayed, A. F. M. Effects of dietary supplementation of a marine thermotolerant bacterium, Bacillus paralicheniformis SO-1, on growth performance and immune responses of nile tilapia, Oreochromis niloticus. Aquacult. Nutr. 25, 817–827. https://doi.org/10.1111/anu.12899 (2019).

    Google Scholar 

  53. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 (1976).

    Google Scholar 

  54. Walter, H. E. Proteases and their inhibitors. 2. 15. 2 Method with haemoglobin, casein and azocoll as substrate. Methods of Enzymatic Analysis 270–277 (1984).

  55. Bernfeld, P. [17] Amylases, α and β. In Methods in Enzymology 149–158 (Academic Press, 1955). https://doi.org/10.1016/0076-6879(55)01021-5

    Google Scholar 

  56. Versaw, W. K., Cuppett, S. L., Winters, D. D. & Williams, L. E. An improved colorimetric assay for bacterial lipase in nonfat dry milk. J. Food Sci. 54, 1557–1558. https://doi.org/10.1111/j.1365-2621.1989.tb05159.x (1989).

    Google Scholar 

  57. Witeska, M., Kondera, E., Ługowska, K. & Bojarski, B. Hematological methods in fish – Not only for beginners. Aquaculture 547, 737498. https://doi.org/10.1016/j.aquaculture.2021.737498 (2022).

    Google Scholar 

  58. Doumas, B. T., Watson, A., Biggs, H. G. & W., and Albumin standards and the measurement of serum albumin with Bromcresol green. Clin. Chim. Acta. 31, 87–96. https://doi.org/10.1016/0009-8981(71)90365-2 (1971).

    Google Scholar 

  59. Allain, C. C., Poon, L. S., Chan, C. S. G., Richmond, W. & Fu, P. C. Enzymatic determination of total serum cholesterol. Clin. Chem. 20, 470–475. https://doi.org/10.1093/clinchem/20.4.470 (1974).

    Google Scholar 

  60. Reitman, S. & Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28, 56–63. https://doi.org/10.1093/ajcp/28.1.56 (1957).

    Google Scholar 

  61. Fawcett, J. K. & Scott, J. E. A rapid and precise method for the determination of urea. J. Clin. Pathol. 13, 156–159. https://doi.org/10.1136/jcp.13.2.156 (1960).

    Google Scholar 

  62. Caraway, W. T. Determination of uric acid in serum by a carbonate method. Am. J. Clin. Pathol. 25, 840–845. https://doi.org/10.1093/ajcp/25.7_ts.0840 (1955).

    Google Scholar 

  63. Marklund, S. & Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469–474 (1974).

    Google Scholar 

  64. Bergmeyer, H. U. Methods of Enzymatic Analysis (Elsevier, 2012).

    Google Scholar 

  65. Buege, J. A. & Aust, S. D. [30] microsomal lipid peroxidation. In Methods in Enzymology. (eds Fleischer, S. & Packer, L.) 302–310 (Academic, 1978). https://doi.org/10.1016/S0076-6879(78)52032-6.

    Google Scholar 

  66. Ellis, A. E. Lysozyme assays. Techniques fish. Immunol. 1, 101–103 (1990).

    Google Scholar 

  67. Manduca, L. G. et al. Effects of different stocking densities on nile tilapia performance and profitability of a Biofloc system with a minimum water exchange. Aquaculture 530, 735814. https://doi.org/10.1016/j.aquaculture.2020.735814 (2021).

    Google Scholar 

  68. Assaad, H. I., Hou, Y., Zhou, L., Carroll, R. J. & Wu, G. Rapid publication-ready MS-word tables for two-way ANOVA. SpringerPlus 4, 33 (2015). https://doi.org/10.1186/s40064-015-0795-z

    Google Scholar 

  69. Avnimelech, Y. Biofloc Technology: A Practical Guide book (World Aquaculture Society, 2009).

    Google Scholar 

  70. Dauda, A. B. Biofloc technology: A review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Reviews Aquaculture. 12, 1193–1210. https://doi.org/10.1111/raq.12379 (2020).

    Google Scholar 

  71. Li, C. et al. Optimized utilization of organic carbon in aquaculture Biofloc systems: A review. Fishes 8, 465. https://doi.org/10.3390/fishes8090465 (2023).

    Google Scholar 

  72. Ekasari, J. et al. The size of Biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture 426–427, 105–111. https://doi.org/10.1016/j.aquaculture.2014.01.023 (2014).

    Google Scholar 

  73. Luo, G., Zhang, N., Cai, S., Tan, H. & Liu, Z. Nitrogen dynamics, bacterial community composition and Biofloc quality in Biofloc-based systems cultured Oreochromis niloticus with poly-β-hydroxybutyric and polycaprolactone as external carbohydrates. Aquaculture 479, 732–741. https://doi.org/10.1016/j.aquaculture.2017.07.017 (2017).

    Google Scholar 

  74. Ray, A. J. et al. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture 310, 130–138. https://doi.org/10.1016/j.aquaculture.2010.10.019 (2010).

    Google Scholar 

  75. Crab, R., Defoirdt, T., Bossier, P. & Verstraete, W. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture 356–357, 351–356. https://doi.org/10.1016/j.aquaculture.2012.04.046 (2012).

    Google Scholar 

  76. Ebeling, J. M., Timmons, M. B. & Bisogni, J. J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257, 346–358. https://doi.org/10.1016/j.aquaculture.2006.03.019 (2006).

    Google Scholar 

  77. Browdy, C. L., Ray, A. J., Leffler, J. W. & Avnimelech, Y. Biofloc-based aquaculture systems. In Aquaculture Production Systems 278–307 (Wiley, 2012). https://doi.org/10.1002/9781118250105 (2012).

    Google Scholar 

  78. Ekasari, J. et al. Biofloc technology positively affects nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture 441, 72–77. https://doi.org/10.1016/j.aquaculture.2015.02.019 (2015).

    Google Scholar 

  79. Zhang, K. et al. Water quality impact on fish behavior: A review from an aquaculture perspective. Rev. Aquacult. 17, e12985. https://doi.org/10.1111/raq.12985 (2025).

    Google Scholar 

  80. Ciji, A. & Akhtar, M. S. Stress management in aquaculture: A review of dietary interventions. Rev. Aquacult. 13, 2190–2247. https://doi.org/10.1111/raq.12565 (2021).

    Google Scholar 

  81. Minaz, M. & Kubilay, A. Operating parameters affecting Biofloc technology: Carbon source, carbon/nitrogen ratio, feeding regime, stocking density, salinity, aeration, and microbial community manipulation. Aquacult. Int. 29, 1121–1140. https://doi.org/10.1007/s10499-021-00681-x (2021).

    Google Scholar 

  82. McCusker, S. et al. Biofloc technology as part of a sustainable aquaculture system: A review on the status and innovations for its expansion. Aquaculture Fish. Fisheries. 3, 331–352. https://doi.org/10.1002/aff2.108 (2023).

    Google Scholar 

  83. Emerenciano, M. G. C., Martínez-Córdova, L. R., Martínez-Porchas, M. & Miranda-Baeza, A. Biofloc technology (BFT): A tool for water quality management in aquaculture. Water Qual. 5, 92–109. https://doi.org/10.5772/66416 (2017).

    Google Scholar 

  84. Kumari, S., Harikrishna, V., Surasani, V. K. R., Balange, A. K. & Babitha Rani, A. M. Growth, biochemical indices and carcass quality of red tilapia reared in zero water discharge based Biofloc system in various salinities using inland saline ground water. Aquaculture 540, 736730. https://doi.org/10.1016/j.aquaculture.2021.736730 (2021).

    Google Scholar 

  85. Abdel-Rahim, M. M., Elhetawy, A. I. G., Shawky, W. A., El-Zaeem, S. Y. & El-Dahhar, A. A. Enhancing Florida red tilapia aquaculture: Biofloc optimization improves water quality, pathogen bacterial control, fish health, immune response, and organ histopathology across varied groundwater salinities. Vet. Res. Commun. 48, 2989–3006. https://doi.org/10.1007/s11259-024-10433-w (2024).

    Google Scholar 

  86. Jiang, B. et al. Multi-omics and biochemical analyses provide insights into hepatic glucolipid metabolism in red tilapia (Oreochromis spp.) under salinity stress. Aquaculture 599, 742203. https://doi.org/10.1016/j.aquaculture.2025.742203 (2025).

    Google Scholar 

  87. El-Sayed, A. F. M. & Kawanna, M. Optimum water temperature boosts the growth performance of nile tilapia (Oreochromis niloticus) fry reared in a recycling system. Aquac. Res. https://doi.org/10.1111/j.1365-2109.2008.01915.x (2008).

    Google Scholar 

  88. Liu, H. et al. Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture 506, 256–269. https://doi.org/10.1016/j.aquaculture.2019.03.031 (2019).

    Google Scholar 

  89. Haridas, H. et al. Growth performance, digestive enzyme activity, non-specific immune response and stress enzyme status in early stages of grey mullet reared in a Biofloc system. Aquac. Res. 52, 4923–4933. https://doi.org/10.1111/are.15326 (2021).

    Google Scholar 

  90. Long, L., Yang, J., Li, Y., Guan, C. & Wu, F. Effect of Biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture 448, 135–141. https://doi.org/10.1016/j.aquaculture.2015.05.017 (2015).

    Google Scholar 

  91. Suzer, C. et al. Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: Effects on growth performance and digestive enzyme activities. Aquaculture 280, 140–145. https://doi.org/10.1016/j.aquaculture.2008.04.020 (2008).

    Google Scholar 

  92. Akinrotimi, O., Orlu, E. & Gabriel, U. Haematological responses of tilapia guineensis treated with industrial effluents. Appl. Ecol. Environ. Sci. 1, 10–13. https://doi.org/10.12691/aees-1-1-3 (2013).

    Google Scholar 

  93. Shourbela, R. M., Khatab, S. A., Hassan, M. M., Van Doan, H. & Dawood, M. A. O. The effect of stocking density and carbon sources on the oxidative Status, and nonspecific immunity of nile tilapia (Oreochromis niloticus) reared under Biofloc conditions. Animals 11, 184. https://doi.org/10.3390/ani11010184 (2021).

    Google Scholar 

  94. Yu, Z., Dai, Z. Y., Li, L., Qin, G. X. & Wu, L. F. Dietary supplementation with Biofloc promotes growth, improves immune and antioxidant status, and upregulates NF-κB/Nrf2 signalling molecules and stress resistance in Rhynchocypris lagowskii Dybowski. Aquacult. Nutr. 27, 225–239. https://doi.org/10.1111/anu.13180 (2021).

    Google Scholar 

  95. Menaga, M., Felix, S., Charulatha, M., Gopalakannan, A. & Panigrahi, A. Effect of in-situ and ex-situ Biofloc on immune response of genetically improved farmed tilapia. Fish Shellfish Immunol. 92, 698–705. https://doi.org/10.1016/j.fsi.2019.06.031 (2019).

    Google Scholar 

  96. Bañuelos-Vargas, I. et al. Antioxidant and immune response of juvenile red tilapia (Oreochromis sp) cultured at different densities in sea water with Biofloc plus probiotics. Aquaculture 544, 737112. https://doi.org/10.1016/j.aquaculture.2021.737112 (2021).

    Google Scholar 

  97. Ebrahimi, A., Akrami, R., Najdegerami, E. H., Ghiasvand, Z. & Koohsari, H. Effects of different protein levels and carbon sources on water quality, antioxidant status and performance of common carp (Cyprinus carpio) juveniles Raised in Biofloc based system. Aquaculture 516, 734639. https://doi.org/10.1016/j.aquaculture.2019.734639 (2020).

    Google Scholar 

  98. Shehata, A. I. et al. Essential oil of Bay Laurel (Laurus nobilis) enhances growth and immunity in cold-stressed nile tilapia (Oreochromis Niloticus). J. Anim. Physiol. Anim. Nutr. 109, 926–941. https://doi.org/10.1111/jpn.14107 (2025).

    Google Scholar 

  99. Wright, P. A. & Wood, C. M. Seven things fish know about ammonia and we don’t. Respir. Physiol. Neurobiol. 184, 231–240. https://doi.org/10.1016/j.resp.2012.07.003 (2012).

    Google Scholar 

  100. Dara, M. et al. Fish welfare in aquaculture: Physiological and immunological activities for diets, social and spatial stress on mediterranean aqua cultured species. Fishes 8, 414. https://doi.org/10.3390/fishes8080414 (2023).

    Google Scholar 

Download references

Funding

Open access funding is provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Author information

Authors and Affiliations

Authors

Contributions

Ghada R. Sallam: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data Curation, Visualization, Writing – Review & Editing. Mohamed Hamdy: Methodology, Validation, Formal analysis, Investigation, Resources, Data Curation. Mohammed F. El Basuini: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data Curation, Visualization, Supervision, Writing – Original Draft, Writing – Review & Editing. Samy Y. El-Zaeem: Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data Curation, Visualization. Yusuf Jibril Habib: Formal analysis, Data Curation, Writing – Review & Editing. Walied M. Fayed: Methodology, Formal analysis, Investigation, Visualization. Eslam Tefal: Methodology, Software, Validation, Formal analysis, Data Curation, Original Draft, Writing – Review & Editing. Akram Ismael Shehata: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data Curation, Visualization, Supervision, Writing – Original Draft, Writing – Review & Editing.

Corresponding authors

Correspondence to
Mohammed F. El Basuini or Akram Ismael Shehata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All experimental procedures were reviewed and approved by the Animal Use Ethics Committee of Alexandria University (protocol number AU:19/24/06/11/1/34). The study was conducted following the ARRIVE guidelines v2.0, ensuring compliance with internationally accepted ethical standards for the care and use of animals in research. Fish were handled carefully to minimize stress during all experimental procedures, and no unnecessary harm was inflicted.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Sallam, G.R., Hamdy, M., El Basuini, M.F. et al. Optimizing salinity and stocking density for red tilapia in zero-water-exchange biofloc system: integrated performance, physiological, and economic assessment.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-28812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-28812-x

Keywords

  • Biofloc technology (BFT)
  • Red tilapia (Oreochromis spp.)
  • Salinity
  • Stocking density
  • Growth performance
  • Hematological biomarkers
  • Antioxidant enzymes
  • Immune response


Source: Ecology - nature.com

Acoustic recordings of underwater vocalizations of Indo-Pacific humpback dolphins in Xiamen Bay, China

Analysing the vulnerability of mangrove forest by vegetation health assessment: a study of Indian sundarbans deltaic region

Back to Top