in

Reconstruction of 2,965 Microbial Genomes from Mangrove Sediments across Guangxi, China


Abstract

Mangrove sediments, being organic-rich and anoxic, host diverse and functionally important microorganisms that play crucial roles in global biogeochemical cycling. In order to characterize this diversity at the genome-resolved level, we collected 38 sediment samples encompassing both surface (0–5 cm) and core (up to 90 cm) depths from six representative mangrove sites across Guangxi Province, China. Using a standardized pipeline for assembly, binning, and dereplication, we reconstructed 2,965 non-redundant metagenome-assembled genomes (MAGs), comprising 2,383 bacterial and 582 archaeal genomes spanning 78 microbial phyla. This dataset captures the high microbial diversity and functional potential within mangrove sediments under variable environmental conditions. It provides a valuable genomic resource for investigating the structure, metabolism, and ecological roles of sediment microbial communities in intertidal, nutrient-rich ecosystems, supporting future studies on microbial adaptation and biogeochemical cycling in global blue carbon environments.

Data availability

The raw sequencing dataset has been deposited in NCBI (PRJNA1270782), and the metagenome-assembled genomes (MAGs) have been deposited in the ENA (PRJEB96880) and the figshare database (https://doi.org/10.6084/m9.figshare.29320385).

Code availability

All in-house code used in this paper is available through a GitHub repository at https://github.com/SongzeCHEN/MetaGenome-MAG-Analysis.

References

  1. Alongi, D. M. Carbon Cycling and Storage in Mangrove Forests. Annu. Rev. Mar. Sci. 6, 195–219 (2014).

    Google Scholar 

  2. Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).

    Google Scholar 

  3. Palit, K., Rath, S., Chatterjee, S. & Das, S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. Environ. Sci. Pollut. Res. 29, 32467–32512 (2022).

    Google Scholar 

  4. Zhang, Z.-F., Liu, L.-R., Pan, Y.-P., Pan, J. & Li, M. Long-read assembled metagenomic approaches improve our understanding on metabolic potentials of microbial community in mangrove sediments. Microbiome 11, 188 (2023).

    Google Scholar 

  5. Brander, L. M. et al. Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosyst. Serv. 1, 62–69 (2012).

    Google Scholar 

  6. Mai, Z. et al. Characteristics of Microbial Community and Function With the Succession of Mangroves. Front. Microbiol. 12 (2021).

  7. Liu, Y. et al. Bacterial Community Structure and Environmental Driving Factors in the Surface Sediments of Six Mangrove Sites from Guangxi, China. Microorganisms 12, 2607 (2024).

    Google Scholar 

  8. Zhang, Z.-F., Pan, J., Pan, Y.-P. & Li, M. Biogeography, Assembly Patterns, Driving Factors, and Interactions of Archaeal Community in Mangrove Sediments. mSystems 6, e01381–20 (2021).

    Google Scholar 

  9. Zhang, Z.-F., Pan, Y.-P., Liu, Y. & Li, M. High-Level Diversity of Basal Fungal Lineages and the Control of Fungal Community Assembly by Stochastic Processes in Mangrove Sediments. Appl. Environ. Microbiol. 87, e00928–21 (2021).

    Google Scholar 

  10. Reis, C. R. G., Nardoto, G. B. & Oliveira, R. S. Global overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems. Plant Soil 410, 1–19 (2017).

    Google Scholar 

  11. The Genome Standards Consortium. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    Google Scholar 

  12. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Google Scholar 

  13. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Google Scholar 

  14. Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLOS ONE 11, e0163962 (2016).

    Google Scholar 

  15. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    Google Scholar 

  16. Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    Google Scholar 

  17. Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Google Scholar 

  18. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    Google Scholar 

  19. Pan, S., Zhu, C., Zhao, X.-M. & Coelho, L. P. A deep siamese neural network improves metagenome-assembled genomes in microbiome datasets across different environments. Nat. Commun. 13, 2326 (2022).

    Google Scholar 

  20. Qiu, Z. et al. BASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis. Nat. Commun. 15, 2179 (2024).

    Google Scholar 

  21. Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 20, 1203–1212 (2023).

    Google Scholar 

  22. Aroney, S. T. N. et al. CoverM: read alignment statistics for metagenomics. Bioinformatics 41, btaf147 (2025).

    Google Scholar 

  23. Nissen, J. N. et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat. Biotechnol. 39, 555–560 (2021).

    Google Scholar 

  24. Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

    Google Scholar 

  25. Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).

    Google Scholar 

  26. Vollmers, J., Wiegand, S., Lenk, F. & Kaster, A.-K. How clear is our current view on microbial dark matter? (Re-)assessing public MAG & SAG datasets with MDMcleaner. Nucleic Acids Res. 50, e76–e76 (2022).

    Google Scholar 

  27. Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    Google Scholar 

  28. Albanese, D. & Donati, C. Large-scale quality assessment of prokaryotic genomes with metashot/prok-quality. F1000Research 10, 822 (2021).

    Google Scholar 

  29. Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22, 178 (2021).

    Google Scholar 

  30. Lowe, T. M. & Chan, P. P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44, W54–W57 (2016).

    Google Scholar 

  31. Rinke, C. et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat. Microbiol. 6, 946–959 (2021).

    Google Scholar 

  32. Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 314–324, https://doi.org/10.1109/IPDPS.2019.00041 (IEEE, Rio de Janeiro, Brazil, 2019).

  33. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Google Scholar 

  34. Sunagawa, S. et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat. Methods 10, 1196–1199 (2013).

    Google Scholar 

  35. Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Methods 10, 881–884 (2013).

    Google Scholar 

  36. Martinez-Gutierrez, C. A. & Aylward, F. O. Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea. Mol. Biol. Evol. 38, 5514–5527 (2021).

    Google Scholar 

  37. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Google Scholar 

  38. Wong, T. K. F. et al. IQ-TREE 3: Phylogenomic Inference Software using Complex Evolutionary Models (2025).

  39. Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82 (2024).

    Google Scholar 

  40. NCBI BioProject https://identifiers.org/ncbi/bioproject:PRJNA1270782 (2025).

  41. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP589204 (2017).

  42. Liu, Y. et al. Reconstruction of 2,965 Microbial Genomes from Mangrove Sediments across Guangxi, China. figshare https://doi.org/10.6084/m9.figshare.29320385 (2025).

  43. ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB96880 (2025).

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi, China (Project Nos. 2024GXNSFBA010371 and 2025GXNSFHA069226), the Beibu Gulf University High-level Talent Scientific Research Start-up Project (Project No. 23KYQD18), the Natural Science Foundation of Guangxi, China (Project No. 2025GXNSFHA069232), the Improving the Basic Scientific Research Capability of Young and Middle-aged Teachers in Guangxi Colleges Project (Project No. 2025KY0471), Science and Technology Bases and Talents Special Project in Guangxi (AD22035181), Marine Science and Technology Innovation Cooperation Foundation of Beibu Gulf Project (Project No. 03190010), Development of Utilization Technology of Probiotics in Fish Gut of Symbiotic System Project (Project No. 02040772), and National College Student Innovation and Entrepreneurship Training Program (Project No. S202511607100 and S202411607011).

Author information

Authors and Affiliations

Authors

Contributions

Y.L., S.C. and R.B. designed the study. Y.L., S.C., H.L., Y.S., J.J. and R.B. performed the data analysis, prepared the figure and tables, wrote the paper, and revised the manuscript. Y.L. and S.C. collected the samples and conducted the experimental procedures. S.C., H.L., N.M., Y.L., J.S., D.S., M.L., J.C., J.S., B.G., J.J. and R.B. provided helpful comments and suggestions to improve the manuscript. All co-authors read and approved the final manuscript.

Corresponding authors

Correspondence to
Jiaojiao Jing or Rongping Bu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Table S1

Table S2

Table S3

Table S4

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Liu, Y., Chen, S., Li, H. et al. Reconstruction of 2,965 Microbial Genomes from Mangrove Sediments across Guangxi, China.
Sci Data (2025). https://doi.org/10.1038/s41597-025-06438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41597-025-06438-y


Source: Ecology - nature.com

Global coral genomic vulnerability explains recent reef losses

Unexpected microbial rhodopsin dynamics in sync with phytoplankton blooms

Back to Top