in

Evidence for dilution effect by Gobio gobio, a dead-end host in the Unio crassus–Cyprinidae coevolutionary system


Abstract

Freshwater mussels (Unionidae) depend on specific fish hosts to complete their life cycle. Glochidia, their parasitic larvae, must attach to the gills or fins of suitable fish species to metamorphose. However, non-host fish may intercept glochidia, reducing larval availability for competent hosts—a phenomenon known as the dilution effect. We investigated this mechanism in a natural population of the endangered mussel Unio crassus, focusing on the interaction between the dominating host Phoxinus phoxinus and the non-host Gobio gobio. Field surveys across three separate reaches of the Warkocz River (2015–2016) and a controlled infestation experiment demonstrated that G. gobio removes a substantial proportion of glochidia without supporting their metamorphosis. Co-occurrence analysis showed a negative relation between infestation levels of G. gobio vs. P. phoxinus, with a significant interaction modulated by U. crassus density. At low mussel densities, the impact of G. gobio on parasitic success was strongest. Gobio gobio was recorded at 90% of the known U. crassus localities in Poland, and in all of these sites it formed a dominant component of the fish assemblage. Our findings provide direct evidence of a context-dependent dilution effect and highlight the importance of fish community composition and behaviour in conservation of unionid mussels. The presence of non-host fish in habitats with low mussel abundance may undermine recruitment and increase extinction risk in fragmented populations.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Buckingham, L. J. & Ashby, B. Coevolutionary theory of hosts and parasites. J. Evol. Biol. 35, 205–224 (2022).

    Google Scholar 

  2. Colwell, R. K., Dunn, R. R. & Harris, N. C. Coextinction and persistence of dependent species in a changing world. Annu. Rev. Ecol. Evol. Syst. 43, 183–203 (2012).

    Google Scholar 

  3. Johnson, P. T. J. & Thieltges, D. W. Diversity, decoys and the Dilution effect: how ecological communities affect disease risk. J. Exp. Biol. 213, 961–970 (2010).

    Google Scholar 

  4. Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).

    Google Scholar 

  5. Lagrue, C. & Poulin, R. Local diversity reduces infection risk across multiple freshwater host-parasite associations. Freshw. Biol. 60, 2445–2454 (2015).

    Google Scholar 

  6. Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: the case of Lyme disease. Conserv. Biol. 14, 722–728 (2000).

    Google Scholar 

  7. Combes, C. & Moné, H. Possible mechanisms of the decoy effect in schistosoma mansoni transmission. Int. J. Parasitol. 17, 971–975 (1987).

    Google Scholar 

  8. Kat, P. W. Parasitism and the Unionacea (Bivalvia). Biol. Rev. 59, 189–207 (1984).

    Google Scholar 

  9. Modesto, V. et al. Fish and mussels: importance of fish for freshwater mussel conservation. Fish. Fish. 19, 244–259 (2018).

    Google Scholar 

  10. Zając, K. et al. On the reintroduction of the endangered thick-shelled river mussel Unio crassus: the importance of the river’s longitudinal profile. Sci. Total Environ. 624, 273–282 (2018).

    Google Scholar 

  11. Aldridge, D. C. et al. Fishing for hosts: larval spurting by the endangered thick-shelled river mussel. Ecology 104, e4026 (2023).

    Google Scholar 

  12. Ćmiel, A. M., Zając, K., Lipińska, A. M. & Zając, T. Glochidial infestation of fish by the endangered thick-shelled river mussel Unio crassus. Aquat. Conserv. 28, 535–544 (2018).

    Google Scholar 

  13. Ćmiel, A. M. et al. The size and shape of parasitic larvae of naiads (Unionidae) are not dependent on female size. Sci. Rep. 11, 23755 (2021).

    Google Scholar 

  14. Zając, K., Zając, T. & Ćmiel, A. What can we infer from the shell dimensions of the thick-shelled river mussel Unio crassus? Hydrobiologia 810, 415–431 (2018).

    Google Scholar 

  15. Strayer, D. L. Freshwater Mussel Ecology: A Multifactor Approach To Distribution and Abundance. (University of California Press, 2008).

  16. Taeubert, J. E., Martinez, A. M. P., Gum, B. & Geist, J. The relationship between endangered thick-shelled river mussel (Unio crassus) and its host fishes. Biol. Conserv. 155, 94–103 (2012).

    Google Scholar 

  17. Barnhart, M. C., Haag, W. R. & Roston, W. N. Adaptations to host infection and larval parasitism in Unionoida. J. N Am. Benthol Soc. 27, 370–394 (2008).

    Google Scholar 

  18. Jansen, W., Bauer, G. & Zahner-Meike, E. Glochidial mortality in freshwater mussels. In: Bauer, G. & Wachtler, K. (eds) Ecology and Evolutionary Biology of the Freshwater Mussels Unionoidea. Ecological Studies. 145 185–211 (Springer, 2001).

  19. Culp, J. J., Haag, W. R., Arrington, D. A. & Kennedy, T. B. Seasonal and species-specific patterns in abundance of freshwater mussel glochidia in stream drift. J. N Am. Benthol Soc. 30, 436–445 (2011).

    Google Scholar 

  20. Dartnall, H. J. G. & Walkey, M. The distribution of glochidia of the Swan mussel, Anodonta cygnea (Mollusca), on the three-spined stickleback Gasterosteus aculeatus (Pisces). J. Zool. 189, 31–37 (1979).

    Google Scholar 

  21. Zale, A. V. & Neves, R. J. Fish hosts of four species of lampsiline mussels (Mollusca: Unionidae) in big moccasin Creek, Virginia. Can. J. Zool. 60, 2535–2542 (1982).

    Google Scholar 

  22. Neves, R. J., Weaver, L. R. & Zale, A. V. An evaluation of host suitability for glochidia of Villosa vanuxemi and V. nebulosa (Pelecypoda: Unionidae). Am. Midl. Nat. 113, 13–19 (1985).

    Google Scholar 

  23. Nicholson, A. J. An outline of the dynamics of animal populations. Aust J. Zool. 2, 9–65 (1954).

    Google Scholar 

  24. Terui, A., Miyazaki, Y., Yoshioka, A. & Matsuzaki, S. I. S. A cryptic allee effect: Spatial contexts mask an existing fitness–density relationship. R Soc. Open. Sci. 2, 150034 (2015).

    Google Scholar 

  25. Zając, T. A. & Zając, K. Spawning in a threatened freshwater mussel shifts to earlier dates as a result of increasing summer mortality. Sci. Rep. 15, 7733 (2025).

    Google Scholar 

  26. Zając, K. & Zając, T. A. The role of active individual movement in habitat selection in the endangered freshwater mussel Unio crassus Philipsson 1788. J. Conchol. 40, 446–461 (2011).

    Google Scholar 

  27. Denic, M., Stoeckl, K., Gum, B. & Geist, J. Physicochemical assessment of Unio crassus habitat quality in a small upland stream and implications for conservation. Hydrobiologia 735, 111–122 (2014).

    Google Scholar 

  28. Wanzenböck, J. Ontogeny of prey capture in the minnow, Phoxinus Phoxinus. Environ. Biol. Fish. 42, 61–74 (1995).

    Google Scholar 

  29. Museth, J., Borgstrøm, R., Brittain, J. E. & Herberg, I. Diet of the minnow (Phoxinus phoxinus) in humic lakes: food resource partitioning in species-poor fish communities. Hydrobiologia 477, 31–39 (2002).

    Google Scholar 

  30. Vinyoles, D., De Sostoa, A. & Lobón-Cerviá, J. Ecology of Gobio Gobio in Iberian streams: life history traits, diet, and habitat use. Folia Zool. 56, 57–70 (2007).

    Google Scholar 

  31. Aldridge, D. C. & McIvor, A. L. Gill evacuation and release of glochidia by Unio pictorum and Unio tumidus (Bivalvia: Unionidae) under thermal and hypoxic stress. J. Molluscan Stud. 69, 55–59 (2003).

    Google Scholar 

  32. Eby, L. A., Roach, W. J., Crowder, L. B. & Stanford, J. A. Effects of stocking-up freshwater food webs. Trends Ecol. Evol. 21, 576–584 (2006).

    Google Scholar 

  33. Gimenez, M., Villéger, S., Grenouillet, G. & Cucherousset, J. Stocking practices shape the taxonomic and functional diversity of fish communities in gravel pit lakes. Fish. Manag Ecol. 30, 603–614 (2023).

    Google Scholar 

  34. Moore, T. P. & Clearwater, S. J. Non-native fish as glochidial sinks: elucidating disruption pathways for echyridella menziesii recruitment. Hydrobiologia 848, 3191–3207 (2021).

    Google Scholar 

  35. Elosegi, A., Diez, J. R. & Mutz, M. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 657, 199–215 (2010).

    Google Scholar 

  36. Stoeckl, K., Taeubert, J. E. & Geist, J. Fish species composition and host fish density in streams of the thick-shelled river mussel (Unio crassus) – implications for conservation. Aquat. Conserv. 25, 276–287 (2015).

    Google Scholar 

  37. Douda, K. et al. Host compatibility as a critical factor in management unit recognition: Population‐level differences in mussel–fish relationships. J. Appl. Ecol. 51, 1085–1095 (2014).

    Google Scholar 

  38. Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).

    Google Scholar 

  39. Zając, K. & Zając, T. A. Seasonal patterns in the developmental rate of glochidia in the endangered thick-shelled river mussel, Unio crassus Philipsson, 1788. Hydrobiologia 848, 3077–3091 (2021).

    Google Scholar 

  40. Taeubert, J. E., El-Nobi, G. & Geist, J. Effects of water temperature on the larval parasitic stage of the thick‐shelled river mussel (Unio crassus). Aquat. Conserv. 24, 231–237 (2014).

    Google Scholar 

  41. Lopes-Lima, M. et al. A curated dataset on the distribution of West Palaearctic freshwater bivalves. Scientific Data 12, 1139 (2025).

    Google Scholar 

Download references

Acknowledgements

The study was supported by statutory funds of the Institute of Nature Conservation, Polish Academy of Sciences. The study was conducted on the basis of permit WNP.6401.190.2014.RN-2, granted to study a protected species (U. crassus). J.D. and K.T. holds a license for conducting electrofishing in accordance with Polish legal requirements.

Author information

Authors and Affiliations

Authors

Contributions

J.D. and T.A.Z. conceived the idea and designed the study. A.M.Ć., J.D., A.L., K.T., K.Z. and T.A.Z. collected the data. J.D., T.A.Z. A.M.Ć., and K.Z. analysed, interpreted and visualised the data. J.D. and T.A.Z. wrote the main text of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to
Tadeusz A. Zając.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Dołęga, J., Zając, T.A., Ćmiel, A. et al. Evidence for dilution effect by Gobio gobio, a dead-end host in the Unio crassus–Cyprinidae coevolutionary system.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-32601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-32601-x


Source: Ecology - nature.com

Short- and long-term effects of culling invasive corallivorous gastropods

Computational analysis and modeling of climate impact on Pteridium aquilinum (L.) populations

Back to Top