Abstract
Accurate species identification is crucial for managing ex-situ populations, especially in cryptic species complexes where taxonomic uncertainty may compromise conservation. The sugar glider (Petaurus breviceps s.l.) is a small nocturnal marsupial commonly bred in zoos and is popular in the exotic pet trade. Recent taxonomic revisions revealed substantial cryptic diversity within the complex, raising concerns about species identity and geographic origin of captive individuals. We used an integrative approach combining genetic and acoustic analyses to assess the taxonomic status of captive P. breviceps s.l. populations. Phylogenetic analyses of mitochondrial ND2 and ND4 genes showed a strong genetic affinity between European and United States captive populations, suggesting a shared origin within the New Guinean lineage. These findings support their reclassification as Petaurus papuanus. Despite their captive origin, these populations showed unexpectedly high haplotype diversity, likely due to repeated introductions from genetically distinct but geographically close wild populations. However, within-group homogeneity indicates limited genetic exchange among breeding lines. Acoustic analyses of the barking call revealed intraspecific variability but little species-specificity, indicating a minor role in reproductive isolation. Our findings underscore the importance of taxonomic clarity and structured genetic management for conserving captive population integrity.
Data availability
Data is provided within the manuscript or supplementary material files. Sequenced fragments of the mitochondrial ND2, ND4, and nuclear ω-globin are available on GenBank (https://www.ncbi.nlm.nih.gov/) under accession numbers: PV701819-PV701993. Recordings of wild individuals are available on iNaturalist (https://www.inaturalist.org/). Additional acoustic data recorded during this study are available from the corresponding author upon request.
References
Lockwood, J. L. et al. When pets become pests: the role of the exotic pet trade in producing invasive vertebrate animals. Front. Ecol. Environ. 17, 323–330 (2019).
Grant, R. A., Montrose, V. T. & Wills, A. P. ExNOTic: should we be keeping exotic pets? Animals 7, 47. https://doi.org/10.3390/ani7060047 (2017).
Hvilsom, C. et al. Understanding geographic origins and history of admixture among chimpanzees in European zoos, with implications for future breeding programmes. Heredity 110, 586–593 (2013).
Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).
Thabah, A. et al. Genetic divergence and echolocation call frequency in cryptic species of Hipposideros larvatus s.l. (Chiroptera: Hipposideridae) from the Indo-Malayan region. Biol. J. Linn. Soc. 88, 119–130 (2006).
Schneiderová, I., Pluháček, J., Bearder, S. & Rosti, H. Evidence-based practice bioacoustics reveals the uniqueness of an ex-situ tree hyrax population. J. Zoo Aquar Res. 12, 42–48 (2024).
Munds, R. A., Nekaris, K. A. I. & Ford, S. M. Taxonomy of the Bornean slow loris, with new species Nycticebus Kayan (Primates, Lorisidae). Am. J. Primatol. 75, 46–56 (2013).
Hotaling, S. et al. Species discovery and validation in a cryptic radiation of endangered primates: Coalescent-based species delimitation in madagascar’s mouse lemurs. Mol. Ecol. 25, 2029–2045 (2016).
Pozzi, L. et al. Species boundaries within morphologically cryptic galagos: evidence from acoustic and genetic data. Folia Primatol. 90, 279–299 (2019).
C McGregor, D. et al. Genetic evidence supports three previously described species of greater glider, petauroides volans, P. minor, and P. armillatus. Sci. Rep. 10 (19284). https://doi.org/10.1038/s41598-020-76364-z (2020).
Umbrello, L. S. et al. Hiding in plain sight: two new species of diminutive marsupial (Dasyuridae: Planigale) from the Pilbara, Australia. Zootaxa 5330, 1–46 (2023).
Zimmermann, E. Differentiation of vocalizations in bushbabies (Galaginae, Prosimiae, Primates) and the significance for assessing phylogenetic relationships. J. Zool. Syst. Evol. Res. 28, 217–239 (1990).
Esser, D., Schehka, S. & Zimmermann, E. Species-specificity in communication calls of tree shrews (Tupaia: Scandentia). J. Mammal. 89, 1456–1463 (2008).
Bettridge, C. M., Kenworthy, S. P., Butynski, T. M., de Jong, Y. A. & de Kort, S. R. Vocal repertoire and intraspecific variation within two loud calls of the small-eared greater Galago (Otolemur garnettii) in Tanzania and Kenya. Folia Primatol. 90, 319–335 (2019).
Oates, J. F. et al. A new species of tree hyrax (Procaviidae: Dendrohyrax) from West Africa and the significance of the Niger-Volta interfluvium in mammalian biogeography. Zool. J. Linn. Soc. 194, 527–552 (2022).
Mittermeier, R. A. et al. Lemurs of Madagascar (Conservation International, 2010).
Baldwin, H. J. et al. Concordant patterns of genetic, acoustic, and morphological divergence in the West African old world leaf-nosed bats of the Hipposideros caffer complex. J. Zool. Syst. Evol. Res. 59, 1390–1407 (2021).
McCowan, B. & Hooper, S. L. Individual acoustic variation in belding’s ground squirrel alarm chirps in the high Sierra Nevada. J. Acoust. Soc. Am. 111, 1157–1160 (2002).
Teixeira, D., Maron, M. & van Rensburg, B. J. Bioacoustic monitoring of animal vocal behavior for conservation. Conserv. Sci. Pract. 1, e72. https://doi.org/10.1111/csp2.72 (2019).
Hasiniaina, A. F. et al. Evolutionary significance of the variation in acoustic communication of a cryptic nocturnal primate radiation (Microcebus spp). Ecol. Evol. 10, 3784–3797 (2020).
Hale, A. M., Hein, C. D. & Straw, B. R. Acoustic and genetic data can reduce uncertainty regarding populations of migratory tree-roosting bats impacted by wind energy. Animals 12, 81. https://doi.org/10.3390/ani12010081 (2022).
Malekian, M., Cooper, S. J. B., Norman, J. A., Christidis, L. & Carthew, S. M. Molecular systematics and evolutionary origins of the genus Petaurus (Marsupialia: Petauridae) in Australia and new Guinea. Mol. Phylogenet Evol. 54, 122–135 (2010).
Burnett, S., Winter, J. & Martin, R. Petaurus gracilis. IUCN Red List. Threatened Species. e.T16727A21959531 https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T16727A21959531.en (2016). (2016).
Leary, T. et al. Petaurus biacensis. IUCN Red List of Threatened Species 2016: e.T16732A21959734. (2016). https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T16732A21959734.en
Leary, T. et al. Petaurus abidi. IUCN Red List of Threatened Species 2016: e.T16726A21959298. (2016). https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T16726A21959298.en
Salas, L. et al. Petaurus Breviceps. IUCN Red List. Threatened Species. e.T16731A21959798 https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T16731A21959798.en (2016). (2016).
Winter, J., Lunney, D., Denny, M., Burnett, S. & Menkhorst, P. Petaurus norfolcensis. IUCN Red List. Threatened Species. e.T16728A21959402 https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T16728A21959402.en (2016). (2016).
Johnson, C. N., Woinarski, J. C. Z. & Burbidge, A. A. Petaurus australis. The IUCN Red List of Threatened Species 2025: e.T16730A258670618 (2025).
Cremona, T. et al. Integrative taxonomic investigation of Petaurus Breviceps (Marsupialia: Petauridae) reveals three distinct species. Zool. J. Linn. Soc. 191, 503–527 (2021).
Smith, M. J. Petaurus Breviceps. Mamm. Species. 30, 1–5 (1973).
Goldingay, R. L. Loud calls of the yellow-bellied glider, Petaurus australis: territorial behaviour by an arboreal marsupial? Aust J. Zool. 42, 279–293 (1994).
Raftery, A. Sugar gliders (Petaurus breviceps). Companion Anim. 20, 422–426 (2015).
Powley, M. & Mikac, K. Comparative analysis of Petaurus cryptic species of ‘sugar glider’ from Australia and new Guinea using 3D geometric morphometrics. Animals 14, 3680. https://doi.org/10.3390/ani14243680 (2024).
Campbell, C. D., Pecon-Slattery, J., Pollak, R., Joseph, L. & Holleley, C. E. The origin of exotic pet sugar gliders (Petaurus breviceps) kept in the united States of America. PeerJ 7, e6180. https://doi.org/10.7717/peerj.6180 (2019).
Franke, F. A. et al. Genetic differentiation of the African Dwarf crocodile Osteolaemus tetraspis Cope, 1861 (Crocodylia: Crocodylidae) and consequences for European zoos. Org. Divers. Evol. 13, 255–266 (2013).
Schmidt, F., Franke, F. A., Shirley, M. H., Vliet, K. A. & Villanova, V. L. The importance of genetic research in zoo breeding programmes for threatened species: the African Dwarf crocodiles (genus Osteolaemus) as a case study. Int. Zoo Yearb. 49, 125–136 (2015).
Shirley, M. H., Villanova, V. L., Vliet, K. A. & Austin, J. D. Genetic barcoding facilitates captive and wild management of three cryptic African crocodile species complexes. Anim. Conserv. 18, 322–330 (2015).
Palmer, A., Sommer, V. & Msindai, J. N. Hybrid apes in the anthropocene: burden or asset for conservation? People Nat. 3, 573–586 (2021).
Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal Omega. Mol. Syst. Biol. 7, 539. https://doi.org/10.1038/msb.2011.75 (2011).
Sievers, F., Barton, G. J. & Higgins, D. G. Multiple sequence alignments. In Bioinformatics (eds Baxevanis, A. D., Bader, G. D. & Wishart, D. S.) 227–250 (Wiley, (2020).
Huelsenbeck, J. P. & Ronquist, F. Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).
Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704. https://doi.org/10.1080/10635150390235520 (2003).
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. JModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).
Rambaut, A. FigTree Ver 1.4.4 (Institute of Evolutionary Biology, University of Edinburgh, 2018).
Kumar, S. et al. MEGA12: molecular evolutionary genetic analysis version 12 for adaptive and green computing. Mol. Biol. Evol. 41, 1–9 (2024).
Leigh, J. W. & Bryant, D. P. O. P. A. R. T. Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
Clement, M., Snell, Q., Walke, P., Posada, D. & Crandall, K. TCS: estimating gene genealogies. In Proceedings 16th International Parallel and Distributed Processing Symposium, 7 ppIEEE Computer Society,. (2002).
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, (2025). https://www.R-project.org/
Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3.3 (2023). https://cran.r-project.org/package=AICcmodavg
Robinson, D., Hayes, A. & Couch, S. broom: Convert statistical objects into tidy tibbles. R package version 1.0.7 (2024). https://CRAN.R-project.org/package=broom
Fox, J. & Weisberg, S. An R companion to applied regression, Third edition. (Sage, (2019). https://www.john-fox.ca/Companion/
Fox, J., Weisberg, S. & Price, B. CarData: companion to applied regression data sets. R Package Version 3 0–5. https://CRAN.R-project.org/package=carData (2022).
Wei, T. & Simko, V. R package ‘corrplot’: Visualization of a correlation matrix (Version 0.95). (2021). Available from https://github.com/taiyun/corrplot
Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7 (2020). https://CRAN.R-project.org/package=factoextra
Kassambara, A. ggcorrplot: Visualization of a Correlation Matrix using ‘ggplot2’. R package version 0.1.4.1 (2023). https://CRAN.R-project.org/package=ggcorrplot
Tang, Y., Horikoshi, M., Li, W. & ggfortify Unified interface to visualize statistical result of popular R packages. R J. 8, 474–485. https://doi.org/10.32614/RJ-2016-060 (2016).
Horikoshi, M. & Tang, Y. ggfortify: Data visualization tools for statistical analysis results (2018). https://CRAN.R-project.org/package=ggfortify
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-, 2016).
Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.6.0 (2023). https://CRAN.R-project.org/package=ggpubr
Yamamoto, H. loadings: Loadings for principal component analysis and partial least squares. R package version 0.5.1 (2024). https://CRAN.R-project.org/package=loadings
Bache, S. & Wickham, H. magrittr: A Forward-pipe operator for R. R package version 2.0.3 (2022). https://CRAN.R-project.org/package=magrittr
Wickham, H. & Bryan, J. readxl: Read excel files. R package version 1.4.5 (2025). https://CRAN.R-project.org/package=readxl
Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.7.2 (2023). https://CRAN.R-project.org/package=rstatix
Wickham, H. et al. Welcome to the tidyverse. J. Open. Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).
Knief, U. & Forstmeier, W. Violating the normality assumption May be the lesser of two evils. Behav. Res. Methods. 53, 2576–2590 (2021).
Nijman, V. An overview of international wildlife trade from Southeast Asia. Biodivers. Conserv. 19, 1101–1114 (2010).
Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20, 1843–1861 (2011).
McGreevy, T. J., Dabek, L., Gomez-Chiarri, M. & Husband, T. P. Genetic diversity in captive and wild matschie’s tree Kangaroo (Dendrolagus matschiei) from Huon Peninsula, Papua new Guinea, based on MtDNA control region sequences. Zoo Biol. 28, 183–196 (2009).
Ito, H., Ogden, R., Langenhorst, T. & Inoue-Murayama, M. Contrasting results from molecular and pedigree-based population diversity measures in captive zebra highlight challenges facing genetic management of zoo populations. Zoo Biol. 36, 87–94 (2017).
Atkinson, K. E., Kitchener, A. C., Tobe, S. S. & O’Donoghue, P. An assessment of the genetic diversity of the founders of the European captive population of Asian Lion (Panthera Leo Leo), using microsatellite markers and studbook analysis. Mamm. Biol. 88, 138–143 (2018).
Farré, M. et al. Novel MtDNA haplotypes represented in the European captive population of the endangered François’ langur (Trachypithecus francoisi). Int. J. Primatol. 43, 533–537 (2022).
Cetkovská, E., Brandlová, K. & Ogden, R. Černá Bolfíková, B. Evaluation of the impact of population management on the genetic parameters of selected spiral-horned antelopes. Biology 13, 104. https://doi.org/10.3390/biology13020104 (2024).
Adavoudi, R. & Pilot, M. Consequences of hybridization in mammals: A systematic review. Genes 13, 50. https://doi.org/10.3390/genes13010050 (2022).
Butynski, T. M., de Jong, Y. A., Perkin, A. W., Bearder, S. K. & Honess, P. E. Taxonomy, distribution, and conservation status of three species of Dwarf Galagos (Galagoides) in Eastern Africa. Primate Conserv. 21, 63–79 (2006).
Masters, J. C. et al. A new genus for the Eastern Dwarf Galagos (Primates: Galagidae). Zool. J. Linn. Soc. 181, 229–241 (2017).
Rosti, H. et al. Vocalization analyses of nocturnal arboreal mammals of the Taita hills, Kenya. Diversity 12, 473. https://doi.org/10.3390/d12120473 (2020).
Chang, Y., Bertola, L. V., Zenger, K. R. & Hoskin, C. J. Conservation genetics of Mahogany gliders and their complex evolutionary relationship with squirrel gliders. Conserv. Genet. 26, 731–750 (2025).
Acknowledgements
We thank all the ex-situ institutions that have contributed to our study, namely the Berlin Zoological Garden, Riga National Zoological Garden, Zoological and Botanical Garden Plzen, Prague Zoological Garden, and the Zoological Garden Brno. We also thank the private breeders for their contributions. The following thanks go to the iNaturalist website and mostly to all the authors of recordings from Australia. We also thank Denisa Stejskalová for her amazing drawing of Petaurus papuanus.
Funding
The research was supported by the Internal Grant Agency of FTZ CZU (IGA20253125).
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by M. M., I. S., and B. Č. B. The first draft of the manuscript was written by M. M., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary Material 1
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Mulko, M., Schneiderová, I. & Černá Bolfíková, B. Taxonomic reassessment of captive sugar gliders using genetic analyses and complementary acoustic data.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-31262-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-31262-0
Keywords
- Bioacoustics
- Captive breeding
- Genetic diversity
- Marsupialia
- Pet trade
- Petauridae
Source: Ecology - nature.com
