Abstract
Climate-induced stressors pose significant threats to fish growth, survival, and ecological stability. Identifying reliable molecular biomarkers is crucial for improving stress management and acclimation strategies. This study employed a comprehensive transcriptomic analysis to examine stress responses in rainbow trout (Oncorhynchus mykiss) exposed to five distinct environmental stressors—high and low temperatures, crowding, salinity, and low water quality (characterized by reduced dissolved oxygen and elevated CO2)—over six hours. A total of 21,580 differentially expressed transcripts (DETs) were identified, including 16,959 unique DETs. Heat stress and salinity induced the most pronounced transcriptomic responses, with most DETs being stressor-specific, highlighting distinct physiological acclimation mechanisms. Only 39 DETs were consistently regulated across all stress conditions. Key DETs associated with heat stress were further analyzed using machine learning models to evaluate their predictive potential in distinguishing control and heat-stressed fish from natural Redband trout populations. The logistic model tree (LMT) classifier demonstrated the highest accuracy with a set of 234 DETs. When the dataset was reduced to 50 or 2 DETs, the Random Forest model achieved optimal classification, consistently identifying two heat shock protein transcripts, hsp47 and hspa4l, as primary predictors across both short- and long-term stress responses. In contrast, core DETs shared across stressors exhibited limited predictive power, achieving only 52.78% classification accuracy. These findings underscore the specificity of molecular signatures to individual stressors and highlight the potential of transcriptomic biomarkers for monitoring climate-induced stress in fish populations. The study recommends the integration of these biomarkers into selective breeding programs and conservation strategies to enhance fish resilience and welfare in the face of environmental change.
Similar content being viewed by others
Comparative study of fish adaptation at cellular and genetic levels across eco-sensitive zones with contrasting oxygen and temperature regimes
Acclimation to higher temperature and antioxidant supplemented diets improved rainbow trout (Oncorhynchus mykiss) resilience to heatwaves
IoT and ML approach for ornamental fish behaviour analysis
Data availability
The raw sequencing data from three strains of Redband trout were downloaded from the NCBI Short Read Archive (SRA) under accession number PRJNA233945. The rainbow trout genome annotation was obtained from NCBI (GCA_013265735.3, https://www.ncbi.nlm.nih.gov/assembly/ GCF_013265735.2/). Additionally, RNA-seq datasets from fish exposed to five different stress conditions were retrieved from the NCBI Sequence Read Archive (SRA) using the accession number SRP070774.
References
Huang, J., Li, Y., Liu, Z., Kang, Y. & Wang, J. Transcriptomic responses to heat stress in rainbow trout Oncorhynchus mykiss head kidney. Fish Shellfish Immunol. 82, 32–40. https://doi.org/10.1016/j.fsi.2018.08.002 (2018).
Komatsu, E., Fukushima, T. & Harasawa, H. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecol. Model. 209, 351–366. https://doi.org/10.1016/j.ecolmodel.2007.07.021 (2007).
Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M. & Wade, A. J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 54, 101–123. https://doi.org/10.1623/hysj.54.1.101 (2009).
Mooij, W. M., De Senerpont Domis, L. N. & Janse, J. H. Linking species- and ecosystem-level impacts of climate change in lakes with a complex and a minimal model. Ecol. Model. 220, 3011–3020. https://doi.org/10.1016/j.ecolmodel.2009.02.003 (2009).
Isangedighi I, Asuquo & Afia O. Climate change: Its Effect on water quality and fish growth. 10, 326-338 (2023)
Dediu, L. et al. Effects of stocking density on growth performance and stress responses of bester and bester female symbol x beluga male symbol juveniles in recirculating aquaculture systems. Animals: Open Access J.MDPI https://doi.org/10.3390/ani11082292 (2021).
Ali, A., Thorgaard, G. H. & Salem, M. PacBio Iso-Seq improves the rainbow trout genome annotation and identifies alternative splicing associated with economically important phenotypes. Front Genet 12, 683408. https://doi.org/10.3389/fgene.2021.683408 (2021).
Liu, S. et al. RNA-seq analysis of early hepatic response to handling and confinement stress in rainbow trout. PLoS ONE 9, e88492. https://doi.org/10.1371/journal.pone.0088492 (2014).
NOAA. (ed National Marine Fisheries Service) (2022).
Weber, G. M. & Silverstein, J. T. Evaluation of a stress response for use in a selective breeding program for improved growth and disease resistance in rainbow trout. N. Am. J. Aquac. 69, 69–79. https://doi.org/10.1577/a05-103.1 (2007).
Rexroad, C. E., Vallejo, R. L., Liu, S., Palti, Y. & Weber, G. M. Quantitative trait loci affecting response to crowding stress in an F(2) generation of rainbow trout produced through phenotypic selection. Marine Biotechnol. 15, 613–627. https://doi.org/10.1007/s10126-013-9512-5 (2013).
Smith, S., Bernatchez, L. & Beheregaray, L. B. RNA-seq analysis reveals extensive transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genomics 14, 375. https://doi.org/10.1186/1471-2164-14-375 (2013).
Liu, S. et al. RNA-Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiol. Genomics 45, 462–476. https://doi.org/10.1152/physiolgenomics.00026.2013 (2013).
Sun, J. et al. RNA-seq analysis reveals alternative splicing under heat stress in rainbow trout (Oncorhynchus mykiss). Marine Biotechnol. 24, 5–17. https://doi.org/10.1007/s10126-021-10082-z (2022).
Hou, Z. S. et al. Transcriptional Profiles of genes related to stress and immune response in rainbow trout (Oncorhynchus mykiss) symptomatically or asymptomatically infected with vibrio anguillarum. Front. Immunol. 12, 639489. https://doi.org/10.3389/fimmu.2021.639489 (2021).
Quan, J. et al. Identification and characterization of long noncoding RNAs provide insight into the regulation of gene expression in response to heat stress in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part D Genomics Proteomics 36, 100707. https://doi.org/10.1016/j.cbd.2020.100707 (2020).
Quan, J. et al. Integrated analysis of the responses of a circRNA-miRNA-mRNA ceRNA network to heat stress in rainbow trout (Oncorhynchus mykiss) liver. BMC Genomics 22, 48. https://doi.org/10.1186/s12864-020-07335-x (2021).
Zhao, G. et al. Ribosome profiling and RNA sequencing reveal translation and transcription regulation under acute heat stress in rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) Liver. Int. J. Mol. Sci. 25, 8848. https://doi.org/10.3390/ijms25168848 (2024).
Narum, S. R. & Campbell, N. R. Transcriptomic response to heat stress among ecologically divergent populations of redband trout. BMC Genomics 16, 103. https://doi.org/10.1186/s12864-015-1246-5 (2015).
Narum, S. R., Campbell, N. R., Kozfkay, C. C. & Meyer, K. A. Adaptation of redband trout in desert and montane environments. Mol Ecol 19, 4622–4637. https://doi.org/10.1111/j.1365-294X.2010.04839.x (2010).
Rehrauer, H., Opitz, L., Tan, G., Sieverling, L. & Schlapbach, R. Blind spots of quantitative RNA-seq: the limits for assessing abundance, differential expression, and isoform switching. BMC Bioinform. 14, 370. https://doi.org/10.1186/1471-2105-14-370 (2013).
Hirsch, C. D., Springer, N. M. & Hirsch, C. N. Genomic limitations to RNA sequencing expression profiling. Plant J. Cell Mol. Biol. 84, 491–503. https://doi.org/10.1111/tpj.13014 (2015).
Sahraeian, S. M. E. et al. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat. Commun. 8, 59. https://doi.org/10.1038/s41467-017-00050-4 (2017).
Rajkumar, A. P. et al. Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq. BMC Genomics 16, 548. https://doi.org/10.1186/s12864-015-1767-y (2015).
Fang, Z., Martin, J. & Wang, Z. Statistical methods for identifying differentially expressed genes in RNA-Seq experiments. Cell Biosci. 2, 26. https://doi.org/10.1186/2045-3701-2-26 (2012).
Ozsolak, F. & Milos, P. M. RNA sequencing: Advances, challenges and opportunities. Nat. Rev. Genet. 12, 87–98. https://doi.org/10.1038/nrg2934 (2011).
Wang, L., Xi, Y., Sung, S. & Qiao, H. RNA-seq assistant: Machine learning based methods to identify more transcriptional regulated genes. BMC Genomics 19, 546. https://doi.org/10.1186/s12864-018-4932-2 (2018).
Mjolsness, E. & DeCoste, D. Machine learning for science: State of the art and future prospects. Science 293, 2051–2055. https://doi.org/10.1126/science.293.5537.2051 (2001).
Kan, A. Machine learning applications in cell image analysis. Immunol. Cell Biol. 95, 525–530. https://doi.org/10.1038/icb.2017.16 (2017).
Vidyasagar, M. Machine learning methods in the computational biology of cancer. Proceed. Math. Phys. Eng. Sci. 470, 20140081. https://doi.org/10.1098/rspa.2014.0081 (2014).
Zhang, J. et al. Computer vision and machine learning for robust phenotyping in genome-wide studies. Sci. Rep. 7, 44048. https://doi.org/10.1038/srep44048 (2017).
Li, J., Ching, T., Huang, S. & Garmire, L. X. Using epigenomics data to predict gene expression in lung cancer. BMC Bioinform. https://doi.org/10.1186/1471-2105-16-S5-S10 (2015).
Ma, C., Xin, M., Feldmann, K. A. & Wang, X. Machine learning-based differential network analysis: A study of stress-responsive transcriptomes in Arabidopsis. Plant Cell 26, 520–537. https://doi.org/10.1105/tpc.113.121913 (2014).
Zhang, Y. et al. Wearable bioimpedance-based deep learning techniques for live fish health assessment under waterless and low-temperature conditions. Sensors 23, 8210. https://doi.org/10.3390/s23198210 (2023).
Fandino Pelayo, J. S., Mendoza Castellanos, L. S., Cazes Ortega, R. & Hernandez-Rojas, L. G. AI-driven monitoring for fish welfare in aquaponics: A predictive approach. Sensors 25, 6107. https://doi.org/10.3390/s25196107 (2025).
Zhu, Y., Zhang, W., Zhang, Y. & Zhang, X. Fish vitality assessment under adversity stress based on multi-sensing fusion and deep learning techniques. Aquaculture 609, 742871. https://doi.org/10.1016/j.aquaculture.2025.742871 (2025).
Sanchez, C. C. et al. Generation of a reference transcriptome for evaluating rainbow trout responses to various stressors. BMC Genomics 12, 626. https://doi.org/10.1186/1471-2164-12-626 (2011).
Silverstein, J. T., Rexroad, C. E. & King, T. L. Genetic variation measured by microsatellites among three strains of domesticated rainbow trout (Oncorhynchus mykiss, Walbaum). Aquac. Res. 35, 40–48. https://doi.org/10.1111/j.1365-2109.2004.00979.x (2004).
Weber, G. M., Vallejo, R. L., Lankford, S. E., Silverstein, J. T. & Welch, T. J. Cortisol Response to a Crowding Stress: Heritability and Association with Disease Resistance to Yersinia ruckeri in Rainbow Trout. N. Am. J. Aquac. 70, 425–433. https://doi.org/10.1577/a07-059.1 (2008).
Pottinger, T. G. & Carrick, T. R. Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. Gen. Comp. Endocrinol. 116, 122–132. https://doi.org/10.1006/gcen.1999.7355 (1999).
Hall, M. et al. The WEKA data mining software. ACM SIGKDD Explorations Newsl 11, 10–18. https://doi.org/10.1145/1656274.1656278 (2009).
Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics (Oxford, England) 36, 2628–2629. https://doi.org/10.1093/bioinformatics/btz931 (2020).
Newell, A. J., Jima, D., Reading, B. & Patisaul, H. B. Machine learning reveals common transcriptomic signatures across rat brain and placenta following developmental organophosphate ester exposure. Toxicol. Sci. 195, 103–122. https://doi.org/10.1093/toxsci/kfad062 (2023).
Pan, H., Xu, R. & Zhang, Y. Role of SPRY4 in health and disease. Front. Oncol. 14, 1376873. https://doi.org/10.3389/fonc.2024.1376873 (2024).
Jiang, W. I. et al. Early-life stress triggers long-lasting organismal resilience and longevity via tetraspanin. Sci. Adv. 10, eadj3880. https://doi.org/10.1126/sciadv.adj3880 (2024).
Mani, B. et al. Tetraspanin 5 orchestrates resilience to salt stress through the regulation of ion and reactive oxygen species homeostasis in rice. Plant Biotechnol. J. 23, 51–71. https://doi.org/10.1111/pbi.14476 (2025).
Costa, A., Hood, I. V. & Berger, J. M. Mechanisms for initiating cellular DNA replication. Annu. Rev. Biochem. 82, 25–54. https://doi.org/10.1146/annurev-biochem-052610-094414 (2013).
Masai, H., Matsumoto, S., You, Z., Yoshizawa-Sugata, N. & Oda, M. Eukaryotic chromosome DNA replication: where, when, and how?. Annu. Rev. Biochem. 79, 89–130. https://doi.org/10.1146/annurev.biochem.052308.103205 (2010).
Alvarez, S. et al. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality. Nat. Commun. 6, 8548. https://doi.org/10.1038/ncomms9548 (2015).
Ninomiya, K. et al. LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J. 39, e102729. https://doi.org/10.15252/embj.2019102729 (2020).
Islas, S., Vega, J., Ponce, L. & Gonzalez-Mariscal, L. Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp. Cell Res. 274, 138–148. https://doi.org/10.1006/excr.2001.5457 (2002).
Traweger, A. et al. The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. J. Biol. Chem. 278, 2692–2700. https://doi.org/10.1074/jbc.M206821200 (2003).
Chang, S. W. et al. Heat stress activates interleukin-8 and the antioxidant system via Nrf2 pathways in human dental pulp cells. J. Endodontics 35, 1222–1228. https://doi.org/10.1016/j.joen.2009.06.005 (2009).
Wang, Z., Zhang, H. & Cheng, Q. PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed. Pharmacother 122, 109688. https://doi.org/10.1016/j.biopha.2019.109688 (2020).
Hu, L. et al. The HSP90AA1 gene is involved in heat stress responses and its functional genetic polymorphisms are associated with heat tolerance in Holstein cows. J. Dairy Sci. 107, 5132–5149. https://doi.org/10.3168/jds.2023-24007 (2024).
Srikanth, K., Kwon, A., Lee, E. & Chung, H. Characterization of genes and pathways that respond to heat stress in Holstein calves through transcriptome analysis. Cell Stress Chaperones 22, 29–42. https://doi.org/10.1007/s12192-016-0739-8 (2017).
Videla Rodriguez, E. A., Mitchell, J. B. O. & Smith, V. A. Robust identification of interactions between heat-stress responsive genes in the chicken brain using Bayesian networks and augmented expression data. Sci. Rep. 14, 9019. https://doi.org/10.1038/s41598-024-58679-3 (2024).
Elliott, E. N., Sheaffer, K. L. & Kaestner, K. H. The ‘de novo’ DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. Elife 5, e12975. https://doi.org/10.7554/eLife.12975 (2016).
Korotko, U., Chwialkowska, K., Sanko-Sawczenko, I. & Kwasniewski, M. DNA demethylation in response to heat stress in Arabidopsis thaliana. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22041555 (2021).
Singh, A. K. et al. Genome-wide expression analysis of the heat stress response in dermal fibroblasts of Tharparkar (zebu) and Karan-Fries (zebu x taurine) cattle. Cell Stress Chaperones 25, 327–344. https://doi.org/10.1007/s12192-020-01076-2 (2020).
Smolenski, R. T. et al. AMP deaminase 1 gene polymorphism and heart disease-a genetic association that highlights new treatment. Cardiovasc Drugs Ther 28, 183–189. https://doi.org/10.1007/s10557-013-6506-5 (2014).
Wang, L. et al. Integrative multiomics analysis of the heat stress response of enterococcus faecium. Biomolecules 13, 437 (2023).
Guo, D. C. et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am. J. Hum. Genet. 96, 170–177. https://doi.org/10.1016/j.ajhg.2014.11.015 (2015).
Sekhar, R. V. et al. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am. J. Clin. Nutr. 94, 847–853. https://doi.org/10.3945/ajcn.110.003483 (2011).
Smith, P. G., Roy, C., Zhang, Y. N. & Chauduri, S. Mechanical stress increases RhoA activation in airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 28, 436–442. https://doi.org/10.1165/rcmb.4754 (2003).
Williams, J. L. et al. Abstract P2005: Loss of full-length Mylk3 causes dilated cardiomyopathy via a Myl2-independent mechanism. Circul. Res. 131, AP2005–AP2005. https://doi.org/10.1161/res.131.suppl_1.P2005 (2022).
Bonam, S. R., Ruff, M. & Muller, S. HSPA8/HSC70 in immune disorders: A molecular rheostat that adjusts chaperone-mediated autophagy substrates. Cells 8, 849. https://doi.org/10.3390/cells8080849 (2019).
Fusakio, M. E. et al. Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver. Mol. Biol. Cell 27, 1536–1551. https://doi.org/10.1091/mbc.E16-01-0039 (2016).
Schwab, R. A. et al. The fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60, 351–361. https://doi.org/10.1016/j.molcel.2015.09.012 (2015).
Varga, T., Czimmerer, Z. & Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochem. Biophys. Acta. 1812, 1007–1022. https://doi.org/10.1016/j.bbadis.2011.02.014 (2011).
Lee, J., Ellis, J. M. & Wolfgang, M. J. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation. Cell Rep. 10, 266–279. https://doi.org/10.1016/j.celrep.2014.12.023 (2015).
Yu, Y. et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7, 193. https://doi.org/10.1038/s41420-021-00579-w (2021).
Samaj, J. et al. Endocytosis, actin cytoskeleton, and signaling. Plant Physiol. 135, 1150–1161. https://doi.org/10.1104/pp.104.040683 (2004).
Leithner, K. New roles for gluconeogenesis in vertebrates. Current Opinion Syst. Biol. 28, 100389. https://doi.org/10.1016/j.coisb.2021.100389 (2021).
Bi, P. & Kuang, S. Notch signaling as a novel regulator of metabolism. Trends Endocrinol. Metab. 26, 248–255. https://doi.org/10.1016/j.tem.2015.02.006 (2015).
Chen, G., Shaw, M. H., Kim, Y. G. & Nunez, G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu. Rev. Pathol. 4, 365–398. https://doi.org/10.1146/annurev.pathol.4.110807.092239 (2009).
UniProt, C. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531. https://doi.org/10.1093/nar/gkac1052 (2023).
Hostetter, D. R., Loeb, C. R., Chu, F. & Craik, C. S. Hip is a pro-survival substrate of granzyme B. J. Biol. Chem. 282, 27865–27874 (2007).
Bredemeyer, A. J., Carrigan, P. E., Fehniger, T. A., Smith, D. F. & Ley, T. J. Hop cleavage and function in granzyme B-induced apoptosis. J. Biol. Chem. 281, 37130–37141. https://doi.org/10.1074/jbc.M607969200 (2006).
Bredemeyer, A. J. et al. A proteomic approach for the discovery of protease substrates. Proc. Natl. Acad. Sci. U.S.A. 101, 11785–11790. https://doi.org/10.1073/pnas.0402353101 (2004).
Caruso, J. A. & Reiners, J. J. Proteolysis of HIP during apoptosis occurs within a region similar to the BID loop. Apoptosis 11, 1877–1885 (2006).
Boivin, W. A., Cooper, D. M., Hiebert, P. R. & Granville, D. J. Intracellular versus extracellular granzyme B in immunity and disease: Challenging the dogma. Lab Invest 89, 1195–1220. https://doi.org/10.1038/labinvest.2009.91 (2009).
Cai, W., Wei, Y., Jarnik, M., Reich, J. & Lilly, M. A. The GATOR2 component Wdr24 regulates TORC1 activity and lysosome function. PLoS Genet 12, e1006036. https://doi.org/10.1371/journal.pgen.1006036 (2016).
Li, H. et al. Physiological stress-induced corticosterone increases heme uptake via KLF4-HCP1 signaling pathway in hippocampus neurons. Sci. Rep. 7, 5745. https://doi.org/10.1038/s41598-017-06058-6 (2017).
Kim, J. S. et al. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci. Rep. 5, 9502. https://doi.org/10.1038/srep09502 (2015).
Tamai, S. et al. Acute cold stress induces transient MuRF1 upregulation in the skeletal muscle of zebrafish. Biochem. Biophys. Res. Commun 608, 59–65. https://doi.org/10.1016/j.bbrc.2022.03.093 (2022).
Schulz, P., Herde, M. & Romeis, T. Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol. 163, 523–530. https://doi.org/10.1104/pp.113.222539 (2013).
Malko, M. M. et al. Effect of Exogenous Calcium on Tolerance of Winter Wheat to Cold Stress during Stem Elongation Stage. Plants (2023).
Cibis, H., Biyanee, A., Dorner, W., Mootz, H. D. & Klempnauer, K. H. Characterization of the zinc finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. Sci. Rep. 10, 8390. https://doi.org/10.1038/s41598-020-65443-w (2020).
Los, D. A. & Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochem. Biophys. Acta. 1666, 142–157. https://doi.org/10.1016/j.bbamem.2004.08.002 (2004).
Greaney, J. L., Alexander, L. M. & Kenney, W. L. Sympathetic control of reflex cutaneous vasoconstriction in human aging. J. Appl. Physiol. 119, 771–782. https://doi.org/10.1152/japplphysiol.00527.2015 (2015).
Sandi, C. Stress, cognitive impairment and cell adhesion molecules. Nat. Rev. Neurosci. 5, 917–930. https://doi.org/10.1038/nrn1555 (2004).
Keebaugh, A. C., Sullivan, R. T., Program, N. C. S. & Thomas, J. W. Gene duplication and inactivation in the HPRT gene family. Genomics 89, 134–142. https://doi.org/10.1016/j.ygeno.2006.07.003 (2007).
Harrell Stewart, D. R. & Clark, G. J. Pumping the brakes on RAS – negative regulators and death effectors of RAS. J. Cell Sci. 133, jcs238865. https://doi.org/10.1242/jcs.238865 (2020).
Lapinski, P. E., Qiao, Y., Chang, C. H. & King, P. D. A role for p120 RasGAP in thymocyte positive selection and survival of naive T cells. J. immunol. 187, 151–163. https://doi.org/10.4049/jimmunol.1100178 (2011).
Garcia-Beltran, J. M. et al. The susceptibility of shi drum juveniles to betanodavirus increases with rearing densities in a process mediated by neuroactive ligand-receptor interaction. Front. Immunol. 15, 1304603. https://doi.org/10.3389/fimmu.2024.1304603 (2024).
Khalifeh, D. M., Czegledi, L. & Gulyas, G. Investigating the potential role of the pituitary adenylate cyclase-activating polypeptide (PACAP) in regulating the ubiquitin signaling pathway in poultry. Gen. Comp. Endocrinol. 356, 114577. https://doi.org/10.1016/j.ygcen.2024.114577 (2024).
de Assis Pinheiro, J. et al. Alcohol consumption, depression, overweight and cortisol levels as determining factors for NR3C1 gene methylation. Sci. Rep. 11, 6768. https://doi.org/10.1038/s41598-021-86189-z (2021).
Fransen, M., Nordgren, M., Wang, B. & Apanasets, O. Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochem. Biophys. Acta. 1363–1373, 2012. https://doi.org/10.1016/j.bbadis.2011.12.001 (1822).
Wysocka, M. B., Pietraszek-Gremplewicz, K. & Nowak, D. The role of apelin in cardiovascular diseases, obesity and cancer. Front. Physiol. 9, 557. https://doi.org/10.3389/fphys.2018.00557 (2018).
Akinrotimi, O., Agokei, E. & Aranyo, A. Changes in blood parameters of Tilapia guineensis exposed to different salinity levels. J. Environ. Eng. Technol. 1, 4–12 (2012).
Baghdadi, H., El-Gharabawy, M., Zaki, M. & El-Greisy, Z. Effect of some environmental and physiological factors on the blood count of Mugil capito during the breeding season. Rapport Comm. Int. Mer Méditerranée 35, 370–371 (1998).
Bosisio, F., Rezende, K. F. O. & Barbieri, E. Alterations in the hematological parameters of juvenile Nile tilapia (Oreochromis niloticus) submitted to different salinities. Pan-American J. Aquatic Sci. 12, 146–154. https://doi.org/10.5281/zenodo.3531596 (2017).
Ali, A. et al. Repercussion of salinity on hematological parameters and tissue morphology of gill and kidney at early life of tilapia. Aquaculture Fisheries 9, 256–264. https://doi.org/10.1016/j.aaf.2022.04.006 (2024).
Mastrodonato, V., Morelli, E. & Vaccari, T. How to use a multipurpose SNARE: The emerging role of Snap29 in cellular health. Cell stress 2, 72–81. https://doi.org/10.15698/cst2018.04.130 (2018).
Pietrobon, A., Yockell-Lelievre, J., Flood, T. A. & Stanford, W. L. Renal organoid modeling of tuberous sclerosis complex reveals lesion features arise from diverse developmental processes. Cell Rep 40, 111048. https://doi.org/10.1016/j.celrep.2022.111048 (2022).
Seifikalhor, M. et al. Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signal. Behav. 14, 1665455. https://doi.org/10.1080/15592324.2019.1665455 (2019).
Su, H., Ma, D., Zhu, H., Liu, Z. & Gao, F. Transcriptomic response to three osmotic stresses in gills of hybrid tilapia (Oreochromis mossambicus female x O. urolepis hornorum male). BMC Genomics 21, 110. https://doi.org/10.1186/s12864-020-6512-5 (2020).
van der Heide, T. & Poolman, B. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc. Natl. Acad. Sci. U.S.A. 97, 7102–7106. https://doi.org/10.1073/pnas.97.13.7102 (2000).
Ding, L. et al. Effects of saline-alkaline stress on metabolome, biochemical parameters, and histopathology in the kidney of crucian carp (Carassius auratus). Metabolites https://doi.org/10.3390/metabo13020159 (2023).
Perenthaler, E. et al. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathol. 139, 415–442. https://doi.org/10.1007/s00401-019-02109-6 (2020).
Fukuda, R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111–122. https://doi.org/10.1016/j.cell.2007.01.047 (2007).
Cristofani, R. et al. The role of HSPB8, a component of the chaperone-assisted selective autophagy machinery, in cancer. Cells 10, 335 (2021).
Chen, L., Wu, M. & Zhou, Y. HSPB8 binding to c-Myc alleviates hypoxia/reoxygenation-induced trophoblast cell dysfunction. Exp. Ther. Med. 27, 114. https://doi.org/10.3892/etm.2024.12402 (2024).
Lian, P., Braber, S., Varasteh, S., Wichers, H. J. & Folkerts, G. Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture. Sci. Rep. 11, 13186. https://doi.org/10.1038/s41598-021-92574-5 (2021).
Saha, N., Koner, D. & Sharma, R. Environmental hypoxia: A threat to the gonadal development and reproduction in bony fishes. Aquacul. Fisheries 7, 572–582. https://doi.org/10.1016/j.aaf.2022.02.002 (2022).
Teitsma, C. et al. Identification of potential sites of cortisol actions on the reproductive axis in rainbow trout. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 119, 243–249. https://doi.org/10.1016/s0742-8413(98)00013-9 (1998).
Svitačová, K., Slavík, O. & Horký, P. Pigmentation potentially influences fish welfare in aquaculture. Appl. Anim. Behav. Sci. 262, 105903. https://doi.org/10.1016/j.applanim.2023.105903 (2023).
Awad, S. T. et al. Gender-specific responses in gene expression of Nile tilapia (Oreochromis niloticus) to heavy metal pollution in different aquatic habitats. Sci. Rep. 14, 14671. https://doi.org/10.1038/s41598-024-64300-4 (2024).
Cano, G. et al. Automatic selection of molecular descriptors using random forest: Application to drug discovery. Expert Syst. Appl. 72, 151–159. https://doi.org/10.1016/j.eswa.2016.12.008 (2017).
Ignatz, E. H. et al. Application of genomic tools to study and potentially improve the upper thermal tolerance of farmed Atlantic salmon (Salmo salar). BMC Genomics 26, 294. https://doi.org/10.1186/s12864-025-11482-4 (2025).
Raymo, G. et al. Fecal microbiome analysis uncovers hidden stress effects of low stocking density on rainbow trout. Anim. Microbiome 6, 57. https://doi.org/10.1186/s42523-024-00344-1 (2024).
Pihlajaniemi, T., Myllyla, R. & Kivirikko, K. I. Prolyl 4-hydroxylase and its role in collagen synthesis. J. Hepatol. 13(Suppl 3), S2-7. https://doi.org/10.1016/0168-8278(91)90002-s (1991).
Mendoza-Porras, O., Rusu, A. G., Stratford, C. & Wade, N. M. Rapid detection of heat stress biomarkers in Atlantic salmon (Salmo salar) liver using targeted proteomics, Aquaculture. Fish Fisheries 4, e147. https://doi.org/10.1002/aff2.147 (2023).
Akbarzadeh, A. et al. Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics 19, 749. https://doi.org/10.1186/s12864-018-5108-9 (2018).
Rebl, A. et al. The synergistic interaction of thermal stress coupled with overstocking strongly modulates the transcriptomic activity and immune capacity of rainbow trout (Oncorhynchus mykiss). Sci. Rep. 10, 14913. https://doi.org/10.1038/s41598-020-71852-8 (2020).
Ito, S. & Nagata, K. Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. Semin. Cell Dev. Biol. 62, 142–151. https://doi.org/10.1016/j.semcdb.2016.11.005 (2017).
Lin, F. et al. Effects of temperature on muscle growth and collagen deposition in zebrafish (Danio rerio). Aquacul. Rep. 22, 100952. https://doi.org/10.1016/j.aqrep.2021.100952 (2022).
Ma, F. & Luo, L. Genome-wide identification of Hsp70/110 genes in rainbow trout and their regulated expression in response to heat stress. PeerJ 8, e10022. https://doi.org/10.7717/peerj.10022 (2020).
Yin, P. et al. Environmentally driven changes in Atlantic salmon oxidative status interact with physiological performance. Aquaculture 581, 740400. https://doi.org/10.1016/j.aquaculture.2023.740400 (2024).
Waraniak, J., Batchelor, S., Wagner, T. & Keagy, J. Landscape transcriptomic analysis detects thermal stress responses and potential adaptive variation in wild brook trout (Salvelinus fontinalis) during successive heatwaves. Sci. Total Environ. 969, 178960. https://doi.org/10.1016/j.scitotenv.2025.178960 (2025).
Kampinga, H. H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105–111. https://doi.org/10.1007/s12192-008-0068-7 (2009).
Funding
Nothing to report.
Author information
Authors and Affiliations
Contributions
Y.A., A.A., and M.S. Conceived the study. Y.A., A.A., G.R., A.D. and M.S. analyzed the data. Y.A. Drafted the manuscript. All authors read and approved the final manuscript. Y.A. and A.A. contributed equally.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary Material 1
Supplementary Material 2
Supplementary Material 3
Supplementary Material 4
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Ali, A., Ali, Y., Raymo, G. et al. Molecular signatures and machine learning driven stress biomarkers for rainbow trout aquaculture and climate adaptation.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-30120-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-30120-3
Keywords
- Environmental stressors
- Heat stress
- Fish welfare
- Predictive modeling
- Aquaculture stress breeding
Source: Ecology - nature.com
