in

Cold-water coral (Lophelia pertusa) response to multiple stressors: High temperature affects recovery from short-term pollution exposure

  • 1.

    Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Chang. Biol. 22, 2665–2675 (2016).

  • 2.

    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

  • 3.

    Philippart, C. J. M. et al. Impacts of climate change on European marine ecosystems: Observations, expectations and indicators. J. Exp. Mar. Bio. Ecol. 400, 52–69 (2011).

    • Article
    • Google Scholar
  • 4.

    IPCC. Climate Change 2014 Synthesis Report Summary Chapter for Policymakers (2014).

  • 5.

    Feely, R. A. et al. Impact of Anthropogenic CO 2 on the CaCO 3 System in the Oceans Richard A. Feely,. Science (80-.). 305, 362–367 (2004).

  • 6.

    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean Acidification: The Other CO 2Problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).

  • 7.

    Queirós, A. M. et al. Scaling up experimental ocean acidification and warming research: From individuals to the ecosystem. Glob. Chang. Biol. 21, 130–143 (2015).

  • 8.

    Purkey, S. G. & Johnson, G. C. Antarctic bottom water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26, 6105–6122 (2013).

  • 9.

    Solomon, S. et al. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press 4 (2007).

  • 10.

    Mora, C. et al. Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLoS Biol. 11 (2013).

  • 11.

    Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem Sci Anth 5, 4 (2017).

    • Article
    • Google Scholar
  • 12.

    Brewer, P. G. Ocean chemistry of the fossil fuel CO2 signal: The haline signal of ‘business as usual’. Geophys. Res. Lett. 24, 1367–1369 (1997).

  • 13.

    Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365–365 (2003).

  • 14.

    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

  • 15.

    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean Acidification: The Other CO 2 Problem, https://doi.org/10.1146/annurev.marine.010908.163834 (2009).

  • 16.

    Moreno, R., Jover, L., Diez, C., Sardà, F. & Sanpera, C. Ten Years after the Prestige Oil Spill: Seabird Trophic Ecology as Indicator of Long-Term Effects on the Coastal Marine Ecosystem. PLoS One 8, 1–10 (2013).

    • Article
    • Google Scholar
  • 17.

    NAS. Behavior and Fate of Oil. Oil in the Sea III 4 (2003).

  • 18.

    Jernelv, A. The threats from oil spills: Now, then, and in the future. Ambio 39, 353–366 (2010).

    • Article
    • Google Scholar
  • 19.

    Muehlenbachs, L., Cohen, M. A. & Gerarden, T. The impact of water depth on safety and environmental performance in offshore oil and gas production. Energy Policy 55, 699–705 (2013).

    • Article
    • Google Scholar
  • 20.

    Crone, T. J. & Tolstoy, M. Magnitude of the 2010 Gulf of Mexico oil leak. Science 330, 634 (2010).

  • 21.

    Camilli, R. et al. Tracking hydrocarbon plume transport and biodegradation at deepwater horizon. Science (80-.) 330, 201–204 (2010).

  • 22.

    Cornwall, W. Deepwater Horizon: After the oil. Science (80-.). 348, 22–29 (2015).

  • 23.

    Mu, J., Jin, F., Ma, X., Lin, Z. & Wang, J. Comparative effects of biological and chemical dispersants on the bioavailability and toxicity of crude oil to early life stages of marine medaka (Oryzias melastigma). Environ. Toxicol. Chem. 33, 2576–2583 (2014).

  • 24.

    Prince, R. C. & Butler, J. D. A protocol for assessing the effectiveness of oil spill dispersants in stimulating the biodegradation of oil. Environ. Sci. Pollut. Res. 21, 9506–9510 (2014).

  • 25.

    Kleindienst, S. et al. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc. Natl. Acad. Sci. 112, 14900–14905 (2015).

  • 26.

    Fisher, C. R. et al. Footprint of Deepwater Horizon blowout impact to deep-water coral communities. Proc. Natl. Acad. Sci. 111, 11744–11749 (2014).

  • 27.

    Etnoyer, P. & Warrenchuk, J. A catshark nursery in a deep gorgonian field in the Mississippi Canyon, Gulf of Mexico. Bull. Mar. Sci. 81, 553–559 (2007).

    • Google Scholar
  • 28.

    Cordes, E. E. et al. Coral communities of the deep Gulf of Mexico. Deep. Res. Part I Oceanogr. Res. Pap. 55, 777–787 (2008).

  • 29.

    Ross, S. W., Quattrini, A. M., Roa-Varón, A. Y. & McClain, J. P. Species composition and distributions of mesopelagic fishes over the slope of the north-central Gulf of Mexico. Deep. Res. Part II Top. Stud. Oceanogr. 57, 1926–1956 (2010).

  • 30.

    Oevelen, D. V et al. The cold-water coral community as a hot spot for carbon cycling on continental margins: A food-web analysis from Rockall Bank (northeast Atlantic). 54, 1829–1844 (2009).

  • 31.

    Etnoyer, P. J. et al. Decline in condition of gorgonian octocorals on mesophotic reefs in the northern Gulf of Mexico: before and after the Deepwater Horizon oil spill. Coral Reefs 35, 77–90 (2016).

  • 32.

    Moore, D. R. & Bullis, H. R. A deep-water coral reef in the Gulf of Mexico. Bull. Mar. Sci. Gulf Caribb. 10, 125–128 (1960).

    • Google Scholar
  • 33.

    Roberts, J. M., Wheeler, A. J. & Freiwald, A. Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science (80-.) 312, 543–547 (2006).

  • 34.

    Wienberg, C. & Titschack, J. Framework-Forming Scleractinian Cold-Water Corals Through Space and Time: A Late Quaternary North Atlantic Perspective. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S., Bramanti, L., Gori, A. & Covadonga, O.) 699–732, https://doi.org/10.1007/978-3-319-21012-4_16 (Springer International Publishing, 2017).

    • Google Scholar
  • 35.

    Quattrini, A. M. et al. A phylogenetic approach to octocoral community structure in the deep Gulf of Mexico. Deep Sea Res. Part II Top. Stud. Oceanogr. 99, 92–102 (2014).

  • 36.

    Quattrini, A. M., Gómez, C. E. & Cordes, E. E. Environmental filtering and neutral processes shape octocoral community assembly in the deep sea. Oecologia, https://doi.org/10.1007/s00442-016-3765-4 (2016).

  • 37.

    Silva, M., Etnoyer, P. J. & MacDonald, I. R. Coral injuries observed at Mesophotic Reefs after the Deepwater Horizon oil discharge. Deep. Res. Part II Top. Stud. Oceanogr. 129, 96–107 (2016).

  • 38.

    White, H. K. et al. Long-Term Persistence of Dispersants following the Deepwater Horizon Oil Spill (2014).

  • 39.

    Fisher, C. R. et al. Coral communities as indicators of ecosystem-level impacts of the deepwater horizon spill. Bioscience 64, 796–807 (2014).

    • Article
    • Google Scholar
  • 40.

    Hsing, P.-Y. et al. Evidence of lasting impact of the Deepwater Horizon oil spill on a deep Gulf of Mexico coral community. Elem. Sci. Anthr 1, 000012 (2013).

    • Article
    • Google Scholar
  • 41.

    White, H. K. et al. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proc. Natl. Acad. Sci. 109, 20303–20308 (2012).

  • 42.

    DeLeo, D. M., Ruiz-Ramos, D. V., Baums, I. B. & Cordes, E. E. Response of deep-water corals to oil and chemical dispersant exposure. Deep Sea Res. Part II Top. Stud. Oceanogr 1–11, https://doi.org/10.1016/j.dsr2.2015.02.028 (2015).

  • 43.

    Frometa, J., DeLorenzo, M. E., Pisarski, E. C. & Etnoyer, P. J. Toxicity of oil and dispersant on the deep water gorgonian octocoral Swiftia exserta, with implications for the effects of the Deepwater Horizon oil spill. Mar. Pollut. Bull. 122, 91–99 (2017).

  • 44.

    Form, A. U. & Riebesell, U. Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob. Chang. Biol. 18, 843–853 (2012).

  • 45.

    Hennige, S. J. et al. Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep. Res. Part II Top. Stud. Oceanogr. 99, 27–35 (2014).

  • 46.

    Movilla, J. et al. Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33, 675–686 (2014).

  • 47.

    Georgian, S. E. et al. Biogeographic variability in the physiological response of the cold-water coral Lophelia pertusa to ocean acidification. Mar. Ecol. https://doi.org/10.1111/maec.12373 (2016).

    • Article
    • Google Scholar
  • 48.

    Kurman, M. D., Gómez, C. E., Georgian, S. E., Lunden, J. J. & Cordes, E. E. Intra-Specific Variation Reveals Potential for Adaptation to Ocean Acidification in a Cold-Water Coral from the Gulf of Mexico. Front. Mar. Sci. 4, 1–14 (2017).

    • Article
    • Google Scholar
  • 49.

    Büscher, J. V., Form, A. U. & Riebesell, U. Interactive Effects of Ocean Acidification and Warming on Growth, Fitness and Survival of the Cold-Water Coral Lophelia pertusa under Different Food Availabilities. Front. Mar. Sci. 4, 1–14 (2017).

    • Article
    • Google Scholar
  • 50.

    Naumann, M. S., Orejas, C. & Ferrier-Pagès, C. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep. Res. Part II Top. Stud. Oceanogr. 99, 36–41 (2014).

  • 51.

    Coelho, F. J. R. C. et al. Unraveling the interactive effects of climate change and oil contamination on laboratory-simulated estuarine benthic communities. Glob. Chang. Biol. 21, 1871–1886 (2015).

  • 52.

    Coelho, F. J. R. C. et al. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution. Mol. Ecol. 25, 4645–4659 (2016).

  • 53.

    Lunden, J. J., McNicholl, C. G., Sears, C. R., Morrison, C. L. & Cordes, E. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Frontiers in Marine Science 1, 74 (2014).

    • Article
    • Google Scholar
  • 54.

    Singer, M. M. et al. Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing. Mar. Pollut. Bull. 40, 1007–1016 (2000).

  • 55.

    Di Toro, D. M., McGrath, J. A. Y. & Stubblefield, W. A. Redicting The Toxicity of Neat and Weathered Crude Oil: Toxic Potential And The Toxicity of Saturated Mixtures. Environ. Toxicol. Chem. 26, 24–36 (2007).

  • 56.

    Singer, M. M. et al. Comparison of acute aquatic effects of the oil dispersant Corexit 9500 with those of other Corexit series dispersants. Ecotoxicol. Environ. Saf. 35, 183–189 (1996).

  • 57.

    Couillard, C. M., Lee, K., Légaré, B. & King, T. L. Effect of dispersant on the composition of the water-accommodated fraction of crude oil and its toxicity to larval marine fish. Environ. Toxicol. Chem. 24, 1496–1504 (2005).

  • 58.

    Becker, E. L., Cordes, E. E., Macko, S. A. & Fisher, C. R. Importance of seep primary production to Lophelia pertusa and associated fauna in the Gulf of Mexico. Deep. Res. Part I Oceanogr. Res. Pap. 56, 786–800 (2009).

  • 59.

    Morrison, C. L. et al. Genetic discontinuity among regional populations of Lophelia pertusa in the North Atlantic Ocean. Conserv. Genet. 12, 713–729 (2011).

    • Article
    • Google Scholar
  • 60.

    Baums, I. B. et al. Genotypic variation influences reproductive success and thermal stress tolerance in the reef building coral, Acropora palmata. Coral Reefs 32, 703–717 (2013).

  • 61.

    Griffiths, J. S., Pan, T. C. F. & Kelly, M. W. Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments. Mol. Ecol. 28, 2715–2730 (2019).

  • 62.

    Kleindienst, S., Paul, J. H. & Joye, S. B. Using dispersants after oil spills: Impacts on the composition and activity of microbial communities. Nat. Rev. Microbiol. 13, 388–396 (2015).

  • 63.

    Simister, R. L., Antzis, E. W. & White, H. K. Examining the diversity of microbes in a deep-sea coral community impacted by the Deepwater Horizon oil spill. Deep. Res. Part II Top. Stud. Oceanogr. 129, 157–166 (2016).

  • 64.

    Osborne, K. et al. Delayed coral recovery in a warming ocean. Glob. Chang. Biol. 23, 3869–3881 (2017).

  • 65.

    Wolff, N. H., Mumby, P. J., Devlin, M. & Anthony, K. R. N. Vulnerability of the Great Barrier Reef to climate change and local pressures. Glob. Chang. Biol. 24, 1978–1991 (2018).

  • 66.

    Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 1–12 (2016).

  • 67.

    Lunden, J. J., Georgian, S. E. & Cordes, E. E. Aragonite saturation states at cold-water coral reefs structured by Lophelia pertusa in the northern Gulf of Mexico. Limnol. Oceanogr. 58, 354–362 (2013).

  • 68.

    Georgian, S. E. et al. Oceanographic patterns and carbonate chemistry in the vicinity of cold-water coral reefs in the Gulf of Mexico: Implications for resilience in a changing ocean. Limnol. Oceanogr. n/a-n/a, https://doi.org/10.1002/lno.10242 (2015).

  • 69.

    Lunden, J. J., Turner, J. M., McNicholl, C. G., Glynn, C. K. & Cordes, E. E. Design, development, and implementation of recirculating aquaria for maintenance and experimentation of deep-sea corals and associated fauna. Limnol. Oceanogr. Methods 12, 363–372 (2014).

    • Article
    • Google Scholar
  • 70.

    Robbins, L. L., Hansen, M. E., Kleypas, J. A. & Meylan, S. C. CO2calc: A User-Friendly Seawater Carbon Calculator for Windows, Mac OS X, and iOS (iPhone). Open-File Report, https://doi.org/10.3133/ofr20101280 (2010).

  • 71.

    Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicz, R. Measurement of the Apparent Dissociation Constants of Carbonic Acid in Seawater at Atmospheric Pressure. Limnol. Ocean. 18, 897–907 (1973).

  • 72.

    Lee, K., Millero, F. J., Byrne, H., Feely, A. & Wanninkhof, R. Acid in 5 and. 27, 229–232 (2000).

  • 73.

    Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to best Practices for Ocean CO2 Measurement. PICES Special Publication 3 (2007).

  • 74.

    Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A, Oceanogr. Res. Pap. 34, 1733–1743 (1987).

  • 75.

    Dickson, A. Standard potential of the reaction: AgCl(s) + 1/2 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).

  • 76.

    Brusca, R. C. & Brusca, G. J. H. Invertebrates. (Sinauer Associates, 1990).

  • 77.

    Brown, B. E. & Bythell, J. C. Perspectives on mucus secretion in reef corals. 296, 291–309 (2005).

  • 78.

    Jatkar, A. A., Brown, B. E., Bythell, J. C., Guppy, R. & Morris, N. J. Coral Mucus: The Properties of Its Constituent Mucins. 883–888 (2010).

  • 79.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

  • 80.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York (2016).

  • 81.

    JMP®, Version 14. SAS Institute Inc., Cary, NC (1989–2019).


  • Source: Ecology - nature.com

    Why recycling lighting waste in Australia is so important

    Evidence in the Japan Sea of microdolomite mineralization within gas hydrate microbiomes